MATHEMATICA CONTROL SYSTEM PROFESSIONAL

COMPREHENSIVE CONTROL SYSTEM ENVIRONMENT WITH INTEGRATED SYMBOLIC CAPABILITY

Control System Professional offers an objectoriented environment for solving common problems in control and systems areas within *Mathematica*. This robust application package covers all steps from creating and manipulating symbolic and numeric models to analyzing, designing, and simulating control systems. With Control System Professional, you can use analytical solutions to study relationships between design elements, gain added insight into complex composite systems, and use numerical solutions for plotting and testing. You can also handle linear MIMO (multi-input, multi-output) systems as well as SISO (single-input, single-output) systems in both time and frequency domains and take advantage of the linearization techniques provided in the package for nonlinear systems.

Control System Professional includes hundreds of examples and case studies that demonstrate the use of this application in many fields including mechanical, electrical, chemical, and aerospace engineering.

KEY BENEFITS

- Provides integrated numeric and symbolic capabilities, which enables you to get analytical solutions to many control problems, such as continuous-to-discrete time conversions, statespace analysis and design, and model building (including estimator and controller design).
- Combines all system information into convenient data structures that can seamlessly pass results from one function to another providing a unified system representation; it automatically recognizes whether your equations are discrete or continuous and chooses algorithms accordingly.
- Allows you to increase the working precision in all calculations to avoid meaningless results that would occur when the result is prone to numerical errors.

For more information, visit www.wolfram.com/csp.

Control System Time-Domain Response Analyses

MATHEMATICA CONTROL SYSTEM PROFESSIONAL

Control System Professional helps you design, analyze, and simulate control systems with the full symbolic, numeric, and graphical capabilities of *Mathematica*.

Realizations Construction and Conversion

	· · · · · · · · · · · · · · · · · · ·	
Professional Features	Provides symbolic analysis capabilities for solving state equations - Simulates system behavior numerically - Includes step, impulse, and ramp response function examples	Selects controllable and observable subsystems; finds the minimal realizations - Computes the Kalman and Jordan canonical forms - Constructs internally balanced realizations - Cancels common zero-pole pairs in transfer functions - Converts
	Collection of Classical Methods	between equivalent realizations with similarity transforms
	Handles arbitrary transfer functions and rational polynomial transfer functions	Feedback Control Systems Design
	with frequency response plotting routines - Generates Bode, Nyquist, and	Computes the feedback for the eigenvalue assignment using Ackermann's formula
	Nichols plots - Reduces complexity for MIMO systems with singular value plots -	or the robust algorithm - Finds the estimator for state reconstruction
	Plots and animates the root loci, providing information on their direction	Ontimal Control Systems Design
	and evolution	Designs the optimal feedback for linear system and guadratic cost functions (i.e.,
	Wide Range of System Interconnections	solves continuous and discrete linear-guadratic optimal control problems) - Finds
	Includes elementary serial (cascade), parallel, and feedback interconnections	the optimal solution to the output regulator problem - Solves the continuous and
	Constructs arbitrary complex composite systems from building blocks	discrete algebraic Riccati equations - Finds the discrete equivalent to the continuous
	Controllability and Observability	regulator - Finds the Kalman estimator and filter for stochastic systems
	Determines and computes controllability and observability - Computes the	Nonlinear Control Systems
	controllability and observability matrices and Gramians - Solves the continuous	Provides a linearization tool for constructing linear models of nonlinear systems
	and discrete matrix Lyapunov equations - Computes the dual to the input system	Makes rational polynomial approximations of nonlinear systems
General <i>Mathematica</i> Features	Over 1900 built-in functions, including the world's largest collection of advanced	High-performance optimization and linear programming functions
	algorithms for numeric and symbolic computation, discrete mathematics, statistics, data analysis, graphics, visualization, and general programming	Wide-ranging support for sparse matrices
	Multi-paradigm symbolic programming language with support for procedural,	Flexible import and export of over 70 data, image, and sparse matrix formats
	functional, list-based, object-oriented, and symbolic programming constructs	Industrial-strength string manipulation
	Automatic precision control and support for exact integers of arbitrary length,	Highly optimized binary data I/O
	and complex numbers	Built-in universal database connectivity
	User-defined or automatic algorithm selection for optimal performance	Integrated web services support
	Fully programmable 2D and 3D visualization with over 50 built-in plot types	Language bindings to C, Java, .NET, and scripting languages
	Fully integrated piecewise functions	MathematicaMark [™] benchmarking tool
	High-speed numerical linear algebra with performance equal to specialized numeric libraries	Toolkit for creating graphical user interfaces

Technical Control System Professional requires Mathematica 4.2 or later and is available for Windows, Mac OS X, Linux, and Unix. Requirements For a more detailed list, see www.wolfram.com/mathematica/platforms.

Related The *Mathematica* Applications Library is a continually expanding collection of software used in conjunction with *Mathematica* to quickly handle specific tasks in **Products** engineering, finance, data analysis, and many other technical areas.

Some of the software packages available are:

Neural Networks • Signals and Systems • Digital Image Processing • Mechanical Systems • Wavelet Explorer • Time Series • Experimental Data Analyst • Fuzzy Logic

Find the latest products and buy online throughout the world at store.wolfram.com. Choose from over 50 technical software products, more than 200 books, *Mathematica* posters, T-shirts, and other items.

For more information, visit www.wolfram.com/csp.

WOLFRAMRESEARCH

WOLFRAM RESEARCH, INC. info@wolfram.com = +1-217-398-0700 WOLFRAM RESEARCH EUROPE LTD. info@wolfram.co.uk = +44-(0)1993-883400 WOLFRAM RESEARCH ASIA LTD.

info@wolfram.co.jp = www.wolfram.co.jp Reseller support only

© 2005 Wolfram Research, Inc. Mathematica is a registered trademark and MathematicaMark is a trademark of Wolfram Research, Inc. All other trademarks are the property of their respective owners. Mathematica is not associated with Mathematica Policy Research, Inc. or MathTech, Inc. MKT2001 493332 0405.jas