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1 Introduction

Neural Networks  is a Mathematica  package designed to train, visualize, and validate neural network models.
A neural network model is a structure that can be adjusted to produce a mapping from a given set of data to
features of or relationships among the data. The model is adjusted, or trained, using a collection of data from
a given source as input, typically referred to as the training set. After successful training, the neural network
will  be  able  to  perform  classification,  estimation,  prediction,  or  simulation  on  new  data  from  the  same  or
similar sources. The Neural Networks package supports different types of training or learning algorithms. 

More specifically, the Neural Networks  package uses numerical data to specify and evaluate artificial neural
network models. Given a set of data, 8xi, yi<i=1

N  from an unknown function, y = f HxL, this package uses numeri-
cal  algorithms to  derive  reasonable  estimates  of  the  function,  f HxL.  This  involves  three  basic  steps:  First,  a
neural network structure is chosen that is considered suitable for the type of data and underlying process to
be modeled. Second, the neural network is trained by using a sufficiently representative set of data. Third,
the  trained  network  is  tested  with  different  data,  from  the  same  or  related  sources,  to  validate  that  the
mapping is of acceptable quality.

The  package  contains  many of  the  standard  neural  network  structures  and  related  learning  algorithms.  It
also includes some special functions needed to address a number of typical problems, such as classification
and  clustering,  time  series  and  dynamic  systems,  and  function  estimation  problems.  In  addition,  special
performance evaluation functions are included to validate and illustrate the quality of the desired mapping.

The documentation contains a number of examples that demonstrate the use of the different neural network
models. You can solve many problems simply by applying the example commands to your own data.

Most  functions  in  the  Neural  Networks  package  support  a  number  of  different  options  that  you can use  to
modify the algorithms. However, the default values have been chosen so as to give good results for a large
variety of  problems,  allowing you to  get  started quickly using only a  few commands.  As  you gain experi-
ence, you will be able to customize the algorithms by changing the options.

Choosing the proper type of neural network for a certain problem can be a critical issue. The package con-
tains  many  examples  illustrating  the  possible  uses  of  the  different  neural  network  types.  Studying  these
examples will help you choose the network type suited to the situation. 

Solved  problems,  illustrations,  and  other  facilities  available  in  the  Neural  Networks  package  should  enable
the interested reader to tackle many problems after reviewing corresponding parts of the guide. However,



this guide does not contain an exhaustive introduction to neural networks. Although an attempt was made
to  illustrate  the  possibilities  and  limitations  of  neural  network  methods  in  various  application  areas,  this
guide is by no means a substitute for standard textbooks, such as those listed in the references at the end of
most  chapters.  Also,  while  this  guide  contains  a  number  of  examples  in  which  Mathematica  functions  are
used with Neural Networks commands, it is definitely not an introduction to Mathematica  itself. The reader is
advised  to  consult  the  standard  Mathematica  reference:  Wolfram,  Stephen,  The  Mathematica  Book,  5th  ed.
(Wolfram Media, 2003).

1.1 Features of This Package

The  following  table  lists  the  neural  network  types  supported  by  the  Neural  Networks  package  along  with
their  typical  usage.  Chapter  2,  Neural  Network  Theory—A  Short  Tutorial,  gives  brief  explanations  of  the
different neural network types.

Network type Typical use HsL of the network

Radial basis function function approximation, classification,
dynamic systems modeling

Feedforward function approximation, classification,
dynamic systems modeling

Dynamic dynamic systems modeling, time series

Hopfield classification, auto-associative memory

Perceptron classification

Vector quantization classification

Unsupervised clustering, self-organizing maps, Kohonen networks

Neural network types supported by the Neural Networks package.

The  functions  in  the  package  are  constructed  so  that  only  the  minimum amount  of  information has  to  be
specified  by  the  user.  For  example,  the  number  of  inputs  and  outputs  of  a  network  are  automatically
extracted from the dimensionality of the data so they do not need to be entered explicitly.
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Trained networks are contained in special objects with a head that identifies the type of network. You do not
have  to  keep  track  of  all  of  the  parameters  and  other  information  contained  in  a  neural  network  model;
everything is  contained in the network object.  Extracting or changing parts of the neural network informa-
tion can be done by addressing the appropriate part of the object.

Intermediate  information  is  logged  during  the  training  of  a  network  and  returned  in  a  special  training
record at the end of the training. This record can be used to analyze the training performance and to access
parameter values at intermediate training stages.

The structure of feedforward  and radial basis function  neural network types can be modified to customize the
network  for  your  specific  problem.  For  example,  the  neuron  activation  function  can  be  changed  to  some
other suitable function. You can also set some of the network parameters to predefined values and exclude
them from the training.

A neural network model can be customized when the unknown function is known to have a special struc-
ture. For example, in many situations the unknown function is recognized as more nonlinear in some inputs
than in others. The Neural Networks package allows you to define a model that is linear with respect to some
of  the  inputs  and  nonlinear  with  respect  to  other  inputs.  After  the  neural  network  structure  has  been
defined,  you  can  proceed  with  the  network’s  training as  you would  with  a  network  that  does  not  have  a
defined structure.

The  Neural  Networks  package  contains  special  initialization  algorithms  for  the  network  parameters,  or
weights,  that  start  the  training  with  reasonably  good  performance.  After  this  initialization,  an  iterative
training  algorithm is  applied  to  the  network  and the  parameter  set  is  optimized.  The  special  initialization
makes  the  training  much  faster  than  a  completely  random  choice  for  the  parameters.  This  also  alleviates
difficulties encountered in problems with multiple local minima. 

For  feedforward,  radial  basis  function,  and dynamic  neural  networks,  the  weights  are  adjusted iteratively  using
gradient-based methods. The Levenberg-Marquardt  algorithm is used by default, because it is considered to
be the best choice for most problems. Another feature in favor of this algorithm is that it can take advantage
of  a  situation  where  a  network  is  linear  in  some  of  its  parameters.  Making  use  of  the  separability  of  the
linear and nonlinear parts of the underlying minimization problem will speed up training considerably. 
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For large data sets and large neural network models,  the training algorithms for some types of neural net-
works will become computation intensive. This package reduces the computation load in two ways: (1) the
expressions are optimized before  numerical evaluation, thus minimizing the number of operations, and (2)
the  computation-intensive  functions  use  the  Compile  command  to  send  compiled  code  to  Mathematica.
Because compiled code can only work with machine-precision numbers, numerical precision will be some-
what restricted. In most practical applications this limitation will be of little significance. If you would prefer
noncompiled evaluation, you could set the compiled option to false, Compiled → False. 
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2 Neural Network Theory—A Short Tutorial

Starting  with  measured  data  from  some  known  or  unknown  source,  a  neural  network  may  be  trained  to
perform classification, estimation, simulation, and prediction of the underlying process generating the data.
Therefore, neural networks, or neural nets, are software tools designed to estimate relationships in data. An
estimated relationship is  essentially a  mapping,  or  a  function,  relating raw data to  its  features.  The Neural
Networks  package supports several function estimation techniques that may be described in terms of differ-
ent types of neural networks and associated learning algorithms.

The general area of artificial neural networks has its roots in our understanding of the human brain. In this
regard, initial concepts were based on attempts to mimic the brain’s way of processing information. Efforts
that followed gave rise to  various models of  biological neural  network structures and learning algorithms.
This is in contrast to the computational models found in this package, which are only concerned with artifi-
cial  neural  networks  as  a  tool  for  solving  different  types  of  problems  where  unknown  relationships  are
sought  among  given  data.  Still,  much  of  the  nomenclature  in  the  neural  network  arena  has  its  origins  in
biological neural networks, and thus, the original terminology will be used alongside with more traditional
nomenclature from statistics and engineering.

2.1 Introduction to Neural Networks

In the context of this package, a neural network is nothing more than a function with adjustable or tunable
parameters.  Let  the  input  to  a  neural  network  be  denoted  by  x,  a  real-valued  (row)  vector  of  arbitrary
dimensionality  or  length.  As  such,  x  is  typically  referred  to  as  input,  input  vector,  regressor,  or  sometimes,
pattern  vector.  Typically,  the  length  of  vector  x  is  said  to  be  the  number  of  inputs  to  the  network.  Let  the
network output be denoted by ỳ, an approximation of the desired output y, also a real-valued vector having
one or more components, and the number of outputs  from the network. Often data sets contain many input-
output pairs. Thus x and y denote matrices with one input and one output vector on each row.

Generally,  a  neural  network  is  a  structure  involving  weighted  interconnections  among  neurons,  or  units,
which  are  most  often  nonlinear  scalar  transformations,  but  they  can  also  be  linear.  Figure  2.1  shows  an
example of a one-hidden-layer neural network with three inputs, x = {x1, x2, x3} that, along with a unity bias
input, feed each of the two neurons comprising the hidden layer. The two outputs from this layer and a unity
bias are then fed into the single output layer neuron, yielding the scalar output, ỳ.  The layer of  neurons is
called hidden because its outputs are not directly seen in the data. This particular type of neural network is



described in detail in Section 2.5, Feedforward and Radial Basis Function Networks. Here, this network will
be used to explain common notation and nomenclature used in the package.

Figure 2.1. A feedforward neural network with three inputs, two hidden neurons, and one output neuron.

Each arrow in Figure 2.1 corresponds to a real-valued parameter,  or a weight, of the network. The values of
these parameters are tuned in the network training.

Generally,  a  neuron is  structured  to  process  multiple  inputs,  including the  unity  bias,  in  a  nonlinear way,
producing a single output. Specifically, all inputs to a neuron are first augmented by multiplicative weights.
These weighted inputs are summed and then transformed via a nonlinear activation function, s. As indicated
in Figure 2.1, the neurons in the first layer of the network are nonlinear. The single output neuron is linear,
since no activation function is used. 

By inspection of Figure 2.1, the output of the network is given by

(1)

ŷ = b2 + „
i=1

2

wi
2 σ 

ikjjjjjbi1 + ‚
j=1

3

wi,j
1  xj

y{zzzzz
= w1

2 σ Hw1,11  x1 + w1,2
1  x2 + w1,3

1  x3 + b1
1L +

w2
2 σ Hw2,11  x1 + w2,2

1  x2 + w2,3
1  x3 + b2

1L + b2

involving  the  various  parameters  of  the  network,  the  weights  9wi,j
1 , bi,j

1 , wi
2, b2=.  The  weights  are  sometimes

referred to as synaptic strengths.

Equation  2.1  is  a  nonlinear  mapping,  ¿Øỳ,  specifically  representing  the  neural  network  in  Figure  2.1.  In
general, this mapping is given in more compact form by

(2)ỳ = g Hq, xL
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where  the  q  is  a  real-valued  vector  whose  components  are  the  parameters  of  the  network,  namely,  the
weights. When algorithmic aspects, independent of the exact structure of the neural network, are discussed,
then this compact form becomes more convenient to use than an explicit one, such as that of Equation 2.1.

This  package  supports  several  types  of  neural  networks  from  which  a  user  can  choose.  Upon  assigning
design parameters to a chosen network, thus specifying its structure g(·,·), the user can begin to train it. The
goal of training is to find values of the parameters q so that, for any input x, the network output ỳ is a good
approximation of the desired output y. Training is carried out via suitable algorithms that tune the parame-
ters q so that input training data map well to corresponding desired outputs. These algorithms are iterative
in nature, starting at some initial value for the parameter vector q  and incrementally updating it to improve
the performance of the network.

Before  the  trained  network  is  accepted,  it  should  be  validated.  Roughly,  this  means  running  a  number  of
tests to determine whether the network model meets certain requirements. Probably the simplest way, and
often  the  best,  is  to  test  the  neural  network  on  a  data  set  that  was  not  used  for  training,  but  which  was
generated under similar conditions. Trained neural networks often fail this validation test, in which case the
user will have to choose a better model. Sometimes, however, it might be enough to just repeat the training,
starting from different  initial parameters q.  Once the neural network is validated,  it is ready to be used on
new data.

The general purpose of the Neural Networks package can be described as function approximation. However,
depending on the origin of the data, and the intended use of the obtained neural network model, the func-
tion approximation problem may be subdivided into several types of problems. Different types of function
approximation problems are described in Section 2.1.1. Section 1.1, Features of This Package, includes a table
giving  an  overview  of  the  supported  neural  networks  and  the  particular  types  of  problems  they  are
intended to address.

2.1.1 Function Approximation

When  input  data  originates  from a  function  with  real-valued  outputs  over  a  continuous range,  the  neural
network is said to perform a traditional function approximation. An example of an approximation problem
could be one where the temperature of an object is to be determined from secondary measurements, such as
emission  of  radiation.  Another  more  trivial  example  could  be  to  estimate  shoe  size  based  on  a  person’s
height. These two examples involve models with one input and one output. A more advanced model of the
second example might use gender as a second input in order to derive a more accurate estimate of the shoe
size.
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Pure functions may be approximated with the following two network types:

   è Feedforward Neural Networks

   è Radial Basis Function Networks

and a basic example can be found in Section 3.4.2, Function Approximation Example.

2.1.2 Time Series and Dynamic Systems

A  special  type  of  function  approximation  problem  is  one  where  the  input  data  is  time  dependent.  This
means that the function at hand has “memory”, is thus dynamic, and is referred to as a dynamic system. For
such systems, past information can be used to predict its future behavior. Two examples of dynamic system
problems  are:  (1)  predicting  the  price  of  a  state  bond  or  that  of  some  other  financial  instrument;  and  (2)
describing the speed of an engine as a function of the applied voltage and load. 

In both of these examples the output signal at some time instant depends on what has happened earlier. The
first example is a time-series  problem modeled as a system involving no inputs. In the second example there
are  two  inputs:  the  applied  voltage  and  the  load.  Examples  of  these  kinds  can  be  found  in  Section  8.2.2,
Identifying the Dynamics of a DC Motor, and in Section 12.2, Prediction of Currency Exchange Rate.

The process of finding a model of a system from observed inputs and outputs is generally known as system
identification. The special case involving time series  is more commonly known as time-series analysis.  This is
an  applied  science  field  that  employs  many  different  models  and  methods.  The  Neural  Network  package
supports  both  linear  and  nonlinear  models  and  methods  in  the  form  of  neural  network  structures  and
associated learning algorithms. 

A  neural  network  models  a  dynamic  system  by  employing  memory  in  its  inputs;  specifically,  storing  a
number of past input and output data. Such neural network structures are often referred to as tapped-delay-
line neural networks, or NFIR, NARX, and NAR models. 

Dynamic neural networks can be either feedforward in structure or employ radial basis functions, and they
must accommodate memory for  past information. This is  further described in Section 2.6,  Dynamic Neural
Networks.

The Neural Networks package contains many useful Mathematica  functions for working with dynamic neural
networks. These built-in functions facilitate the training and use of the dynamic neural networks for predic-
tion and simulation.
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2.1.3 Classification and Clustering

In  the  context  of  neural  networks,  classification  involves  deriving  a  function  that  will  separate  data  into
categories, or classes,  characterized by a distinct set of features.  This function is mechanized by a so-called
network classifier,  which is trained using data from the different classes as inputs, and vectors indicating the
true class as outputs. 

A  network  classifier  typically  maps  a  given  input  vector  to  one  of  a  number  of  classes  represented  by  an
equal number of outputs, by producing 1 at the output class and 0 elsewhere. However, the outputs are not
always  binary  (0  or  1);  sometimes  they  may  range  over  80, 1<,  indicating  the  degrees  of  participation  of  a
given input over the output classes. The Neural Networks package contains some functions especially suited
for this kind of constrained approximation. 

The following types of neural networks are available for solving classification problems:

   è  Perceptron

   è  Vector Quantization Networks

   è  Feedforward Neural Networks

   è  Radial Basis Function Networks

   è  Hopfield Networks

A basic classification example can be found in Section 3.4.1, Classification Problem Example.

When the desired outputs are not specified, a neural network can only operate on input data.  As such, the
neural network cannot be trained to produce a  desired output in  a supervised way, but must instead look
for  hidden structures  in  the input  data without supervision,  employing so-called self-organizing.  Structures
in data manifest themselves as constellations of clusters that imply levels of correlation among the raw data
and a consequent reduction in dimensionality and increased information in coding efficiency. Specifically, a
particular  input  data  vector  that  falls  within  a  given  cluster  could  be  represented  by  its  unique  centroid
within some squared error. As such, unsupervised networks may be viewed as classifiers, where the classes
are the discovered clusters. 

An  unsupervised  network  can  also  employ  a  neighbor  feature  so  that  “proximity”  among  clusters  may  be
preserved in the clustering process. Such networks, known as self-organizing maps or Kohonen networks,  may
be  interpreted  loosely  as  being  nonlinear  projections  of  the  original  data  onto  a  one-  or  two-dimensional
space.
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Unsupervised networks and self-organizing maps are described in some detail in Section 2.8, Unsupervised
and Vector Quantization Networks.

2.2 Data Preprocessing

The Neural  Networks  package offers  several  algorithms to  build  models  using data.  Before  applying any of
the  built-in  functions  for  training,  it  is  important  to  check  that  the  data  is  “reasonable.”  Naturally,  you
cannot  expect  to  obtain  good  models  from  poor  or  insufficient  data.  Unfortunately,  there  is  no  standard
procedure that can be used to test the quality of the data. Depending on the problem, there might be special
features in the data that may be used in testing data quality. Toward this end, some general advice follows. 

One  way  to  check  for  quality  is  to  view  graphical  representations  of  the  data  in  question,  in  the  hope  of
selecting a reasonable subset while eliminating problematic parts. For this purpose, you can use any suitable
Mathematica  plotting function  or  employ  other  such functions that  come with the  Neural  Networks  package
especially designed to visualize the data in classification, time series, and dynamic system problems. 

In  examining  the  data  for  a  classification  problem,  some  reasonable  questions  to  ask  may  include  the
following:

   è  Are all classes equally represented by the data?

   è  Are there any outliers, that is, data samples dissimilar from the rest?

For time-dependent data, the following questions might be considered:

   è  Are there any outliers, that is, data samples very different from neighboring values?

   è  Does the input signal of the dynamic system lie within the interesting amplitude range?

   è  Does the input signal of the dynamic system excite the interesting frequency range?

Answers to these questions might reveal potential difficulties in using the given data for training. If so, new
data may be needed. 

Even if they appear to be quite reasonable, it might be a good idea to consider preprocessing the data before
initiating training.  Preprocessing  is  a  transformation,  or  conditioning,  of  data  designed  to  make  modeling
easier  and  more  robust.  For  example,  a  known  nonlinearity  in  some  given  data  could  be  removed  by  an
appropriate transformation, producing data that conforms to a linear model that is easier to work with. 
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Similarly, removing detected trends and outliers in the data will improve the accuracy of the model. There-
fore, before training a neural network, you should consider the possibility of transforming the data in some
useful way.

You should always make sure that the range of the data is  neither too small nor too large so that you stay
well  within  the  machine  precision  of  your  computer.  If  this  is  not  possible,  you  should  scale  the  data.
Although Mathematica  can  work  with  arbitrary  accuracy,  you  gain  substantial  computational  speed  if  you
stay within machine precision.  The reason for  this is  that the Neural  Networks  package achieves substantial
computational speed-up  using the Compile  command, which limits  subsequent computation to  the preci-
sion of the machine.

It is also advisable to scale the data so that the different input signals have approximately the same numeri-
cal  range.  This  is  not  necessary for  feedforward and Hopfield  networks,  but is  recommended for  all  other
network models.  The reason for  this  is  that  the other network models  rely on Euclidean measures,  so that
unscaled data could bias or  interfere  with the training process.  Scaling the data so that all  inputs have the
same range often speeds up the training and improves resulting performance of the derived model.

It is also a good idea to divide the data set into training data and validation data. The validation data should
not be used in the training but, instead, be reserved for the quality check of the obtained network. 

You may use any of the available Mathematica commands to perform the data preprocessing before applying
neural  network  algorithms;  therefore,  you  may  consult  the  standard  Mathematica  reference:  Wolfram,
Stephen,  The  Mathematica  Book,  5th  ed.  (Wolfram  Media,  2003).  Some  interesting  starting  points  might  be
Section 1.6.6 Manipulating Numerical Data,  Section 1.6.7 Statistics,  and Section 1.8.3,  Vectors and Matrices,
as  well  as  the  standard  Mathematica  add-on  packages  Statistics`DataManipulation`  and  Linearg
Algebra`MatrixManipulation`.
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2.3 Linear Models

A general modeling principle is to “try simple things first.” The idea behind this principle is that there is no
reason to make a model more complex than necessary.  The simplest type of model is often a linear model.
Figure 2.2 illustrates a linear model. Each arrow in the figure symbolizes a parameter in the model.

Figure 2.2. A linear model.

Mathematically, the linear model gives rise to the following simple equation for the output

(3)ŷ = w1 x1 + w2 x2 + ... + wn xn + b

Linear models are called regression models  in traditional statistics. In this case the output ỳ  is said to regress
on the inputs x1,...,xn plus a bias parameter b.

Using the Neural Networks package, the linear model in Figure 2.2 can be obtained as a feedforward network
with one linear output neuron. Section 5.1.1, InitializeFeedForwardNet describes how this is done.

A linear model may have several outputs. Such a model can be described as a network consisting of a bank
of linear neurons, as illustrated in Figure 2.3.
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Figure 2.3. A multi-output linear model.

2.4 The Perceptron

After  the linear  networks,  the perceptron  is  the  simplest  type  of  neural network and it  is  typically used for
classification.  In  the  one-output  case  it  consists  of  a  neuron  with  a  step  function.  Figure  2.4  is  a  graphical
illustration of a perceptron with inputs x1, ..., xn and output ỳ.

Figure 2.4. A perceptron classifier.
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As indicated, the weighted sum of the inputs and the unity bias are first summed and then processed by a
step function to yield the output

(4)ŷ Hx, w, bL = UnitStep@w1 x1 + w2 x2 + ... + wn xn + bD
where {w1,  ...,  wn}  are  the weights applied to the input vector  and b  is  the bias weight.  Each weight is  indi-
cated with an arrow in Figure 2.4.  Also,  the UnitStep  function is  0  for  arguments less  than 0 and 1 else-
where.  So,  the  output  ỳ  can  take  values  of  0  or  1,  depending  on  the  value  of  the  weighted  sum.  Conse-
quently,  the  perceptron  can indicate  two classes corresponding to  these  two output  values.  In the  training
process, the weights (input and bias) are adjusted so that input data is mapped correctly to one of the two
classes. An example can be found in Section 4.2.1, Two Classes in Two Dimensions.

The  perceptron  can  be  trained  to  solve  any  two-class  classification  problem  where  the  classes  are  linearly
separable.  In two-dimensional problems (where x  is a two-component row vector),  the classes may be sepa-
rated  by  a  straight  line,  and  in  higher-dimensional  problems,  it  means  that  the  classes  are  separable  by  a
hyperplane.

If  the  classification problem is  not  linearly separable,  then  it  is  impossible to  obtain a  perceptron  that  cor-
rectly  classifies  all  training  data.  If  some  misclassifications  can  be  accepted,  then  a  perceptron  could  still
constitute a good classifier.

Because  of  its  simplicity,  the  perceptron  is  often  inadequate as  a  model  for  many problems.  Nevertheless,
many classification problems have simple solutions for which it may apply. Also, important insights may be
gained from using the perceptron,  which may shed some light when considering more complicated neural
network models.

Perceptron  classifiers  are  trained  with  a  supervised  training  algorithm.  This  presupposes  that  the  true
classes  of  the  training  data  are  available  and  incorporated  in  the  training  process.  More  specifically,  as
individual  inputs are  presented to  the perceptron,  its  weights are adjusted iteratively by the training algo-
rithm  so  as  to  produce  the  correct  class  mapping  at  the  output.  This  training  process  continues  until  the
perceptron  correctly  classifies  all  the  training  data  or  when  a  maximum  number  of  iterations  has  been
reached.  It  is  possible to choose a judicious initialization of the weight values,  which in many cases makes
the iterative learning unnecessary. This is described in Section 4.1.1, InitializePerceptron.

Classification problems  involving a  number  of  classes  greater  than  two can be  handled  by  a  multi-output
perceptron that  is  defined  as  a  number  of  perceptrons  in  parallel.  It  contains one perceptron,  as  shown in
Figure 2.4, for each output, and each output corresponds to a class.
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The training process of such a multi-output perceptron structure attempts to map each input of the training
data to the correct class by iteratively adjusting the weights to produce 1 at the output of the corresponding
perceptron and 0 at the outputs of all the remaining outputs. However, it is quite possible that a number of
input vectors may map to multiple classes, indicating that these vectors could belong to several classes. Such
cases may require special handling. It may also be that the perceptron classifier cannot make a decision for a
subset of input vectors because of the nature of the data or insufficient complexity of the network structure
itself. An example with several classes can be found in Section 4.2.2, Several Classes in Two Dimensions.

Training Algorithm

The training of a one-output perceptron will be described in the following section. In the case of a multi-out-
put perceptron, each of the outputs may be described similarly.

A perceptron is defined parametrically by its weights 8w, b<,  where w  is a column vector of length equal to
the  dimension  of  the  input  vector  x  and  b  is  a  scalar.  Given  the  input,  a  row  vector,  x = 8x1, ..., xn<,  the
output of a perceptron is described in compact form by

(5)ŷ Hx, w, bL = UnitStep@x w + bD
This description can also be used when a set of input vectors is considered. Let x be a matrix with one input
vector  in  each row.  Then ỳ  in  Equation 2.5  becomes a  column vector  with the  corresponding output  in  its
rows.

The  weights  8w, b<  are  obtained  by  iteratively  training  the  perceptron  with  a  known  data  set  containing
input-output pairs, one input vector in each row of a matrix x, and one output in each row of a matrix y, as
described in Section 3.2.1, Data Format. Given N such pairs in the data set, the training algorithm is defined
by

(6)

wi+1 = wi + η xT εi

bi+1 = bi + η ‚
j=1

N

εi@@jDD
where i is the iteration number, h is a scalar step size, and ei = y - ỳ Hx, wi, biL is a column vector with N-com-
ponents of classification errors corresponding to the N  data samples of the training set. The components of
the error vector can only take three values, namely, 0, 1, and –1. At any iteration i,  values of 0 indicate that
the  corresponding  data  samples  have  been  classified  correctly,  while  all  the  others  have  been  classified
incorrectly. 
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The training algorithm Equation 2.5 begins with initial values for the weights 8w, b< and i = 0, and iteratively
updates  these  weights  until  all  data  samples  have  been  classified  correctly  or  the  iteration  number  has
reached a maximum value, imax. 

The step size h, or learning rate as it is often called, has the following default value

(7)η =
HMax@xD − Min@xDL
cccccccccccccccccccccccccccccccccccccccccccccc

N

By compensating for the range of the input data, x, and for the number of data samples, N, this default value
of h should be good for many classification problems independent of the number of data samples and their
numerical range. It is also possible to use a step size of choice rather than using the default value. However,
although larger values of h might accelerate the training process, they may induce oscillations that may slow
down the convergence.

2.5 Feedforward and Radial Basis Function Networks

This section describes feedforward and radial basis function networks, both of which are useful for function
approximation. Mathematically, these  networks may be viewed as parametric  functions,  and their  training
constituting  a  parameter  estimation  or  fitting  process.  The  Neural  Networks  package  provides  a  common
built-in function, NeuralFit, for training these networks.

2.5.1 Feedforward Neural Networks

Feedforward  neural  networks  (FF networks)  are  the  most  popular  and most  widely  used models  in  many
practical applications. They are known by many different names, including “multi-layer perceptrons.”

Figure 2.5 illustrates a one-hidden-layer FF network with inputs x1, …, xn  and output ỳ.  Each arrow in the
figure symbolizes a parameter in the network. The network is divided into layers. The input layer consists of
just the inputs to the network. Then follows a hidden layer, which consists of any number of neurons, or hidden
units  placed  in  parallel.  Each  neuron  performs  a  weighted  summation  of  the  inputs,  which  then  passes  a
nonlinear activation function s, also called the neuron function.
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Figure 2.5. A feedforward network with one hidden layer and one output.

Mathematically the functionality of a hidden neuron is described by

σ 
ikjjjjjj‚j=1

n

 wj xj + bj
y{zzzzzz

where the weights 8wj, bj< are symbolized with the arrows feeding into the neuron.

The network output is formed by another weighted summation of the outputs of the neurons in the hidden
layer.  This summation on the output is called the  output layer.  In Figure 2.5 there is only one output in the
output layer since it is a single-output problem. Generally, the number of output neurons equals the number
of outputs of the approximation problem.

The neurons in the hidden layer of the network in Figure 2.5 are similar in structure to those of the percep-
tron,  with  the  exception  that  their  activation functions  can  be  any differential  function.  The output  of  this
network is given by

(8)ŷ HθL = g Hθ, xL = „
i=1

nh

 wi
2 σ 

ikjjjjj‚j=1

n

 wi,j
1  xj + bj,i

1
y{zzzzz + b2

where  n  is  the  number  of  inputs  and  nh  is  the  number  of  neurons  in  the  hidden  layer.  The  variables9wi,j
1 , bj,i

1 , wi
2, b2=  are the parameters of the network model that are represented collectively by the parameter

vector q. In general, the neural network model will be represented by the compact notation gHq, xL whenever
the exact structure of the neural network is not necessary in the context of a discussion.
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Some small function approximation examples using an FF network can be found in Section 5.2, Examples.

Note  that  the  size  of  the  input  and output  layers  are  defined  by the  number  of  inputs  and outputs  of  the
network and, therefore, only the number of hidden neurons has to be specified when the network is defined.
The network in Figure 2.5 is sometimes referred to as a three-layer network, with input, hidden, and output
layers.  However,  since  no processing takes place  in the  input layer,  it  is  also sometimes called a two-layer
network.  To  avoid  confusion  this  network  is  called  a  one-hidden-layer  FF  network  throughout  this
documentation.

In training the network, its parameters are adjusted incrementally until the training data satisfy the desired
mapping as  well  as  possible;  that  is,  until  ỳ(q)  matches the  desired  output  y  as  closely as  possible  up  to  a
maximum number of iterations. The training process is described in Section 2.5.3, Training Feedforward and
Radial Basis Function Networks.

The nonlinear activation function in the neuron is usually chosen to be a smooth step function. The default is
the standard sigmoid

(9)Sigmoid@xD =
1

cccccccccccccccc
1 + e−x

that looks like this.

In[1]:= << NeuralNetworks`
Plot@Sigmoid@xD, 8x, −8, 8<D
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The FF network in Figure 2.5 is just one possible architecture of an FF network. You can modify the architec-
ture in  various ways by changing the options.  For  example,  you can change the activation function to any
differentiable function you want. This is illustrated in Section 13.3.2, The Neuron Function in a Feedforward
Network.
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Multilayer Networks

The  package supports  FF neural  networks with any number  of  hidden layers  and any number  of  neurons
(hidden neurons) in each layer. In Figure 2.6 a multi-output FF network with two hidden layers is shown.

Figure 2.6. A multi-output feedforward network with two hidden layers.

The number of layers and the number of hidden neurons in each hidden layer are user design parameters.
The general rule is to choose these design parameters so that the best possible model, with as few parame-
ters as possible, is obtained. This is, of course, not a very useful rule, and in practice you have to experiment
with  different  designs  and  compare  the  results,  to  find  the  most  suitable  neural  network  model  for  the
problem at hand. 

For many practical applications, one or two hidden layers will suffice. The recommendation is to start with a
linear model; that is, neural networks with no hidden layers, and then go over to networks with one hidden
layer but with no more than five to ten neurons. As a last step you should try two hidden layers.

The output neurons in the FF networks in Figures 2.5 and 2.6 are linear; that is, they do not have any nonlin-
ear activation function after the weighted sum. This is normally the best choice if  you have a general func-
tion, a time series or a dynamical system that you want to model. However, if you are using the FF network
for  classification,  then  it  is  generally  advantageous  to  use  nonlinear  output  neurons.  You  can  do  this  by
using the  option OutputNonlinearity  when using the  built-in  functions  provided  with  the  Neural  Net-
works  package,  as  illustrated  in  the  examples  offered  in  Section  5.3,  Classification  with  Feedforward  Net-
works, and Section 12.1, Classification of Paper Quality.
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2.5.2 Radial Basis Function Networks

After  the  FF  networks,  the  radial  basis  function  (RBF)  network  comprises  one  of  the  most  used  network
models.

Figure 2.7 illustrates an RBF network with inputs x1, …, xn and output ỳ. The arrows in the figure symbolize
parameters in the network. The RBF network consists of one hidden layer of basis functions, or neurons. At
the  input  of  each  neuron,  the  distance  between  the  neuron  center  and  the  input  vector  is  calculated.  The
output of the neuron is then formed by applying the basis function to this distance. The RBF network output
is formed by a weighted sum of the neuron outputs and the unity bias shown.

Figure 2.7. An RBF network with one output.

The  RBF  network  in  Figure  2.7  is  often  complemented  with  a  linear  part.  This  corresponds  to  additional
direct  connections  from  the  inputs  to  the  output  neuron.  Mathematically,  the  RBF  network,  including  a
linear part, produces an output given by

(10)

ŷ HθL =

g Hθ, xL = ‚
i=1

nb

wi
2 e−λi

2 Hx−wi1L2 + wnb+1
2 + χ1 x1 + ... + χn xn

where  nb  is  the  number  of  neurons,  each  containing a  basis  function.  The  parameters  of  the  RBF network
consist  of  the  positions  of  the  basis  functions  wi

1,  the  inverse  of  the  width  of  the  basis  functions  li,  the
weights in output sum wi

2, and the parameters of the linear part c1, …, cn. In most cases of function approxi-
mation, it is advantageous to have the additional linear part, but it can be excluded by using the options.
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The parameters are often lumped together in a common variable q to make the notation compact. Then you
can use the generic description gHq, xL of the neural network model, where g is the network function and x is
the input to the network.

In training the network, the parameters are tuned so that the training data fits the network model Equation
2.10 as well  as possible.  This is described in Section 2.5.3,  Training Feedforward and Radial Basis Function
Networks.

In Equation 2.10 the basis function is chosen to be the Gaussian bell function. Although this function is the
most commonly used basis function, other basis functions may be chosen. This is described in Section 13.3,
Select Your Own Neuron Function.

Also, RBF networks may be multi-output as illustrated in Figure 2.8.

Figure 2.8. A multi-output RBF network.

FF  networks  and  RBF  networks  can  be  used  to  solve  a  common  set  of  problems.  The  built-in  commands
provided  by  the  package  and  the  associated  options  are  very  similar.  Problems  where  these  networks  are
useful include:

   è  Function approximation

   è  Classification

   è  Modeling of dynamic systems and time series
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2.5.3 Training Feedforward and Radial Basis Function Networks

Suppose you have chosen an FF or RBF network and you have already decided on the exact structure,  the
number  of  layers,  and the  number  of  neurons  in  the  different  layers.  Denote  this  network  with  ỳ = gHq, xL
where q is a parameter vector containing all the parametric weights of the network and x is the input. Then it
is time to train the network. This means that q will be tuned so that the network approximates the unknown
function producing your data. The training is done with the command NeuralFit, described in Chapter 7,
Training  Feedforward  and  Radial  Basis  Function  Networks.  Here  is  a  tutorial  on  the  available  training
algorithms.

Given a fully specified network, it  can now be trained using a set of data containing N  input-output pairs,8xi, yi<i=1
N . With this data the mean square error (MSE) is defined by

(11)VN HθL =
1
cccc
N

 ‚
i=1

N Hyi − g Hθ, xiLL2
Then, a good estimate for the parameter q is one that minimizes the MSE; that is,

(12)θ
ˆ

= argmin
θ

 VN HθL
Often it is more convenient to use the root-mean-square error (RMSE)

(13)RMSE HθL = è!!!!!!!!!!!!!!!VN HθL
when  evaluating  the  quality  of  a  model  during  and  after  training,  because  it  can  be  compared  with  the
output signal directly.  It  is  the RMSE value that is  logged and written out during the training and plotted
when the training terminates.

The  various  training  algorithms  that  apply  to  FF  and  RBF  networks  have  one  thing  in  common:  they  are
iterative. They both start with an initial parameter vector q0, which you set with the command Initializeg
FeedForwardNet  or  InitializeRBFNet.  Starting  at  q0,  the  training  algorithm iteratively  decreases  the
MSE in Equation 2.11 by incrementally updating q along the negative gradient of the MSE, as follows

(14)θi+1 = θi − µ R ∇θVN HθL
Here, the matrix R may change the search direction from the negative gradient direction to a more favorable
one.  The  purpose  of  parameter  m  is  to  control  the  size  of  the  update  increment  in  q  with  each  iteration  i,
while  decreasing  the  value  of  the  MSE.  It  is  in  the  choice  of  R  and  m  that  the  various  training  algorithms
differ in the Neural Networks package.
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If R is chosen to be the inverse of the Hessian of the MSE function, that is, the inverse of

(15)

d2 VN HθL
ccccccccccccccccccccccc

dθ2
= ∇θ

2 VN HθL =

2
cccc
N

 ‚
i=1

N

∇θg Hθ, xiL ∇θg Hθ, xiLT − 2
cccc
N

 ‚
i=1

N Hyi − g Hθ, xiLL ∇θ
2 g Hθ, xiL

then Equation 2.14 assumes the  form of  the  Newton algorithm. This search scheme can be  motivated by a
second-order  Taylor expansion of  the MSE function at the current  parameter estimate qi.  There are several
drawbacks to using Newton’s algorithm. For example,  if  the Hessian is  not positive definite,  the q  updates
will be in the positive gradient direction, which will increase the MSE value. This possibility may be avoided
with a commonly used alternative for R, the first part of the Hessian in Equation 2.15:

(16)H =
2
cccc
N

 ‚
i=1

N

∇θg Hθ, xiL ∇θg Hθ, xiLT
With H defined, the option Method may be used to choose from the following algorithms:

   è  Levenberg-Marquardt

   è  Gauss-Newton

   è  Steepest descent

   è  Backpropagation

   è  FindMinimum

Levenberg-Marquardt

Neural network minimization problems are often very ill-conditioned; that is, the Hessian in Equation 2.15 is
often  ill-conditioned.  This  makes  the  minimization  problem  harder  to  solve,  and  for  such  problems,  the
Levenberg-Marquardt algorithm is often a good choice. For this reason, the Levenberg-Marquardt algorithm
method is the default training algorithm of the package. 

Instead  of  adapting  the  step  length  m  to  guarantee  a  downhill  step  in  each  iteration  of  Equation  2.14,  a
diagonal matrix is added to H in Equation 2.16; in other words, R is chosen to be

(17)R = HH + eλ IL−1
and m = 1.
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The value of l  is chosen automatically so that a downhill step is produced. At each iteration, the algorithm
tries to decrease the value of l by some increment Dl. If the current value of l does not decrease the MSE in
Equation 2.14, then l is increased in steps of Dl until it does produce a decrease. 

The training is terminated prior to the specified number of iterations if  any of the following conditions are
satisfied:

   è  λ>10∆λ+Max[s]

è
VN HθiL − VN Hθi+1L
cccccccccccccccccccccccccccccccccccccccccccc

VN HθiL < 10−PrecisionGoal

Here PrecisionGoal is an option of NeuralFit and s is the largest eigenvalue of H.

Large  values  of  l  produce  parameter  update  increments  primarily  along  the  negative  gradient  direction,
while small values result  in updates governed by the Gauss-Newton method. Accordingly, the Levenberg-
Marquardt algorithm is a hybrid of the two relaxation methods, which are explained next.

Gauss-Newton

The Gauss-Newton method is a fast and reliable algorithm that may be used for a large variety of minimiza-
tion problems. However,  this algorithm may not be a good choice for neural network problems if the Hes-
sian is  ill-conditioned; that is,  if  its eigenvalues span a large numerical range. If  so, the algorithm will con-
verge poorly, slowing down the training process.

The training algorithm uses  the  Gauss-Newton method when matrix  R  is  chosen to  be  the  inverse  of  H  in
Equation 2.16; that is,

(18)R = H−1

At  each  iteration,  the  step length  parameter  is  set  to  unity,  m = 1.  This  allows the  full  Gauss-Newton step,
which is accepted only if the MSE in Equation 2.11 decreases in value. Otherwise m is halved again and again
until a downhill step is affected. Then, the algorithm continues with a new iteration.

The  training  terminates  prior  to  the  specified  number  of  iterations  if  any  of  the  following  conditions  are
satisfied:

Ë  
VN HθiL − VN Hθi+1L
cccccccccccccccccccccccccccccccccccccccccccc

VN HθiL < 10−PrecisionGoal

è µ < 10−15
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Here PrecisionGoal is an option of NeuralFit.

Steepest Descent

The training algorithm in Equation 2.14 reduces to the steepest descent form when 

(19)R = I

This  means  that  the  parameter  vector  q  is  updated  along  the  negative  gradient  direction  of  the  MSE  in
Equation 2.13 with respect to q. 

The step length parameter m  in Equation 2.14 is adaptable. At each iteration the value of m is doubled. This
gives a preliminary parameter update. If the criterion is not decreased by the preliminary parameter update,
m  is  halved  until  a  decrease  is  obtained.  The  default  initial  value  of  the  step  length  is m = 20,  but  you  can
choose another value with the StepLength option.

The  training with  the  steepest  descent  method will  stop prior  to  the  given number  of  iterations under  the
same conditions as the Gauss-Newton method.

Compared to  the  Levenberg-Marquardt  and the  Gauss-Newton algorithms,  the  steepest  descent  algorithm
needs fewer computations in each iteration, because there is no matrix to be inverted. However, the steepest
descent method is typically much less efficient than the other two methods, so that it is often worth the extra
computational load to use the Levenberg-Marquardt or the Gauss-Newton algorithm.

Backpropagation

The backpropagation algorithm is similar to the steepest descent algorithm, with the difference that the step
length m is kept fixed during the training. Therefore the backpropagation algorithm is obtained by choosing
R=I in the parameter update in Equation 2.14. The step length m is set with the option StepLength, which
has default m = 0.1.

The training algorithm in Equation 2.14 may be augmented by using a momentum parameter a, which may
be set with the Momentum option. The new algorithm is

(20)∆θi+1 = −µ
dVN HθL
ccccccccccccccccccc

dθ
+ α∆θi

(21)θi+1 = θi + ∆θi+1

Note that the default value of a is 0.
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The idea of using momentum is motivated by the need to escape from local minima, which may be effective
in  certain  problems.  In  general,  however,  the  recommendation  is  to  use  one  of  the  other,  better,  training
algorithms and repeat the training a couple of times from different initial parameter initializations.

FindMinimum

If  you prefer,  you can use  the  built-in  Mathematica  minimization command FindMinimum  to  train FF and
RBF networks. This is done by setting the option Method→FindMinimum  in NeuralFit.  All other choices
for Method  are algorithms specially written for neural network minimization, which should be superior to
FindMinimum  in  most  neural  network  problems.  See  the  documentation  on  FindMinimum  for  further
details. 

Examples comparing the performance of the various algorithms discussed here may be found in Chapter 7,
Training Feedforward and Radial Basis Function Networks.

2.6 Dynamic Neural Networks

Techniques to estimate a system process from observed data fall under the general category of system identifi-
cation. Figure 2.9 illustrates the concept of a system.

Figure 2.9. A system with input signal u, disturbance signal e, and output signal y.

Loosely speaking, a system is an object in which different kinds of signals interact and produce an observable
output  signal.  A  system  may  be  a  real  physical  entity,  such  as  an  engine,  or  entirely  abstract,  such  as  the
stock market.

There are three types of signals that characterize a system, as indicated in Figure 2.9. The output signal y(t) of
the system is an observable/measurable signal, which you want to understand and describe. The input signal
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u(t)  is an external measurable signal, which influences the system. The disturbance signal e(t)  also influences
the system but, in contrast to the input signal, it is not measurable. All these signals are time dependent.

In a single-input,  single-output (SISO) system, these signals are time-dependent scalars.  In the multi-input,
multi-output  (MIMO)  systems,  they  are  represented  by  time-dependent  vectors.  When  the  input  signal  is
absent, the system corresponds to a time-series  prediction  problem. This system is then said to be noise driven,
since the output signal is only influenced by the disturbance e(t).

The  Neural  Networks  package  supports  identification  of  systems  with  any  number  of  input  and  output
signals. 

A system may be modeled by a dynamic neural network that consists of a combination of neural networks
of FF or RBF types, and a specification of the input vector to the network. Both of these two parts have to be
specified  by  the  user.  The  input  vector,  or  regressor  vector,  which  it  is  often  called  in  connection  with
dynamic systems,  contains lagged input and output values of  the system specified by three  indices:  na,  nb,
and nk. For a SISO model the input vector looks like this:

(22)
x HtL = @y Ht − 1L ... y Ht − naL

u Ht − nkL ... u Ht − nk − nb + 1LDT
Index na  represents the number of lagged output values; it is often referred to as the order of the model. Index
nk  is  the  input  delay  relative  to  the  output.  Index  nb  represents  the  number  of  lagged  input  values.  In  a
MIMO case,  each individual lagged signal value is a  vector  of appropriate length. For example, a problem
with three outputs and two inputs na = 81, 2, 1<, nb = 82, 1<, and nk = 81, 0< gives the following regressor:

x HtL = @y1 Ht − 1L y2 Ht − 1L y2 Ht − 2L
y3 Ht − 1L u1 Ht − 1L u1 Ht − 2L u2 HtLD

For time-series problems, only na has to be chosen.

The  dynamic  part  of  the  neural  network  defines  a  mapping from the regressor  space  to  the  output  space.
Denote  the  neural  network  model  by  gHq, xHtLL  where  q  is  the  parameter  vector  to  be  estimated  using
observed data. Then the prediction ỳ(t) can be expressed as 

(23)ŷ HtL = g Hθ, x HtLL
Models with a regressor like Equation 2.22 are called ARX models, which stands for AutoRegressive with eXtra
input  signal.  When  there  is  no  input  signal  u(t),  its  lagged  valued  may  be  eliminated  from  Equation  2.22,
reducing it to an AR model. Because the mapping gHq, xHtLL is based on neural networks, the dynamic models
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are called neural ARX and neural AR models, or neural AR(X) as the short form for both of them. Figure 2.10
shows a neural ARX model, based on a one-hidden-layer FF network.

Figure 2.10. A neural ARX model.

The special case of an ARX model, where no lagged outputs are present in the regressor (that is, when na=0
in Equation 2.22), is often called a Finite Impulse Response (FIR) model.

Depending  on  the  choice  of  the  mapping  gHq, xHtLL  you  obtain  a  linear  or  a  nonlinear  model  using  an  FF
network or an RBF network. 

Although the disturbance signal e(t) is not measurable, it can be estimated once the model has been trained.
This estimate is called the prediction error and is defined by

(24)ê HtL = y HtL − ŷ HtL
A good model that explains the data well should yield small prediction errors. Therefore, a measure of è HtL
may be used as a model-quality index.

System identification and time-series  prediction  examples  can be  found in Section  8.2,  Examples,  and Sec-
tion 12.2, Prediction of Currency Exchange Rate.
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2.7 Hopfield Network

In  the  beginning  of  the  1980s,  Hopfield  published  two  scientific  papers  that  attracted  much  interest.  This
was the beginning of the new era of neural networks, which continues today.

Hopfield  showed  that  models  of  physical  systems  could  be  used  to  solve  computational  problems.  Such
systems  could  be  implemented  in  hardware  by  combining  standard  components  such  as  capacitors  and
resistors. 

The  importance  of  the  different  Hopfield  networks  in  practical  application  is  limited  due  to  theoretical
limitations of the network structure,  but,  in  certain situations, they may form interesting models.  Hopfield
networks are typically used for classification problems with binary pattern vectors.

The Hopfield network is  created by supplying input data vectors,  or pattern vectors,  corresponding to the
different  classes.  These  patterns  are  called  class  patterns.  In  an  n-dimensional  data  space  the  class  patterns
should have n binary components 81, -1<;  that is,  each class pattern corresponds to a corner of a cube in an
n-dimensional  space.  The  network  is  then  used  to  classify  distorted  patterns  into  these  classes.  When  a
distorted  pattern  is  presented  to  the  network,  then  it  is  associated  with  another  pattern.  If  the  network
works properly,  this associated pattern is one of the class patterns.  In some cases (when the different  class
patterns  are  correlated),  spurious  minima  can  also  appear.  This  means  that  some  patterns  are  associated
with patterns that are not among the pattern vectors.

Hopfield  networks  are  sometimes  called  associative  networks  because  they  associate  a  class  pattern  to  each
input pattern.

The  Neural  Networks  package  supports  two  types  of  Hopfield  networks,  a  continuous-time  version  and  a
discrete-time version. Both network types have a matrix of weights W defined as

(25)W =
1
cccc
n

 ‚
i=1

D

ξi
T ξi

where D is the number of class patterns 8x1,  x2, ..., xD<, vectors consisting of + ê-1 elements, to be stored in
the network, and n is the number of components, the dimension, of the class pattern vectors.

Discrete-time Hopfield networks have the following dynamics:

(26)x Ht + 1L = Sign@W x HtLD
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Equation 2.26 is applied to one state, xHtL,  at a time. At each iteration the state to be updated is chosen ran-
domly.  This  asynchronous  update  process  is  necessary  for  the  network  to  converge,  which  means  that
xHtL = Sign@W xHtLD.
A distorted pattern, xH0L,  is used as initial state for the Equation 2.26, and the associated pattern is the state
toward which the difference equation converges. That is, starting with xH0L and then iterating Equation 2.26
gives the associated pattern when the equation converges.

For a discrete-time Hopfield network, the energy of a certain vector x is given by

(27)E HxL = −xWxT

It can be shown that, given an initial state vector xH0L,  xHtL  in Equation 2.26 will converge to a value having
minimum  energy.  Therefore,  the  minima  of  Equation  2.27  constitute  possible  convergence  points  of  the
Hopfield network. Ideally, these minima are identical to the class patterns 8x1,  x2, ..., xD<. Therefore, you can
guarantee  that  the  Hopfield  network  will  converge  to  some pattern,  but  you cannot  guarantee  that  it  will
converge to the correct pattern.

Note that the energy function can take negative values; this is,  however, just a matter of scaling. Adding a
sufficiently large constant to the energy expression it can be made positive.

 The continuous-time Hopfield network is described by the following differential equation

(28)
dx HtL
ccccccccccccccccc
dt

= −x HtL + Wσ@x HtLD
where xHtL  is  the  state vector  of  the  network, W  represents  the  parametric  weights,  and s  is  a nonlinearity
acting  on  the  states  xHtL.  The  weights  W  are  defined  in  Equation  2.25.  The  differential  equation,  Equation
2.28, is solved using an Euler simulation.

To define a continuous-time Hopfield network, you have to choose the nonlinear function s. There are two
choices supported by the package: SaturatedLinear and the default nonlinearity of Tanh.

For a continuous-time Hopfield network, defined by the parameters given in Equation 2.25, you can define
the energy of a particular state vector x as

(29)E HxL = −
1
cccc
2

 xWxT + ‚
i=1

m ‡
0

xi

σ−1 HtL Åt
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As for the discrete-time network, it can be shown that given an initial state vector xH0L, the state vector xHtL in
Equation 2.28 converges to  a local energy minimum. Therefore,  the minima of  Equation 2.29 constitute the
possible convergence points of the Hopfield network. Ideally these minima are identical to the class patterns8x1,  x2, ..., xD<. However, there is no guarantee that the minima will coincide with this set of class patterns.

Examples with Hopfield nets can be found in Section 9.2, Examples.

2.8 Unsupervised and Vector Quantization Networks

Unsupervised  algorithms  are  used  to  find  structures  in  the  data.  They  can,  for  instance,  be  used  to  find
clusters of data points, or to find a one-dimensional relation in the data. If such a structure exists, it can be
used to describe the data in a more compact way. 

Most  network  models  in  the  package  are  trained  with  supervised  training  algorithms.  This  means  that  the
desired  output  must  be  available  for  each  input  vector  used  in  the  training.  Unsupervised  networks,  or
self-organizing networks, rely only on input data and try to find structures in the input data space. The train-
ing algorithms are therefore called unsupervised. 

Since  there  is  no  “correct”  output,  there  will  also  not  be  any  “incorrect”  outputs.  This  fact  leaves  a  lot  of
responsibility to the user. After an unsupervised network has been trained, it must be tested to show that it
makes  sense,  that  is,  if  the  obtained  structure  is  really  representing  the  data.  This  validation  can  be  very
tricky, especially if  you work in a high-dimensional space. In two- or three-dimensional problems, you can
always plot the data and the obtained structure and simply examine them. Another test that can be applied
in  any number  of  dimensions is  to  check  for  the  mean distance  between  the  data  points  and the  obtained
cluster centers. A small mean distance means that the data is well represented by the clusters.

An  unsupervised  network  consists  of  a  number  of  codebook  vectors,  which  constitute  cluster  centers.  The
codebook vectors are of the same dimension as the input space, and their components are the parameters of
the unsupervised network. The codebook vectors are called the neurons of the unsupervised network.

When  an  unsupervised  network  is  trained,  the  locations  of  the  codebook  vectors  are  adapted  so  that  the
mean Euclidian  distance  between  each  data  point  and its  closest  codebook vector  is  minimized.  The algo-
rithm, called competitive learning, is described in Section 10.1.2, UnsupervisedNetFit.

An unsupervised network can employ a neighbor feature.  This gives rise to a self-organizing map  (SOM).  For
SOM networks, not only is the mean distance between the data and nearest codebook vector minimized, but
also the distance between the codebook vectors. In this way it is possible to define one- or two-dimensional
relations among the  codebook vectors,  and the  obtained SOM  unsupervised network becomes a  nonlinear
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mapping from the original data space to the one- or two-dimensional feature space defined by the codebook
vectors. Self-organizing maps are often called self-organizing feature maps, or Kohonen networks.

When the  data  set  has  been  mapped by  a  SOM  to  a  one-  or  two-dimensional space,  it  can be  plotted  and
investigated visually.

The training algorithm using the neighbor feature is described in Section 10.1.2, UnsupervisedNetFit.

Another  neural  network  type  that  has some similarities to  the  unsupervised one is  the  Vector  Quantization
(VQ) network, whose intended use is  classification. Like unsupervised networks,  the VQ network is based
on  a  set  of  codebook  vectors.  Each  class  has  a  subset  of  the  codebook  vectors  associated  to  it,  and  a  data
vector  is  classified  to  be  in  the  class  to  which  the  closest  codebook  vector  belongs.  In  the  neural  network
literature, the codebook vectors are often called the neurons of the VQ network. 

Each of the codebook vectors has a part of the space “belonging” to it. These subsets form polygons and are
called Voronoi cells. In two-dimensional problems you can plot these Voronoi cells.

The positions of the codebook vectors are obtained with a supervised training algorithm, and you have two
different ones to choose from. The default one is called Learning Vector Quantization (LVQ) and it adjusts the
positions of  the  codebook vectors  using both the  correct  and incorrect  classified data.  The  second training
algorithm  is  the  competitive  training  algorithm,  which  is  also  used  for  unsupervised  networks.  For  VQ
networks this training algorithm can be used by considering the data and the codebook vectors of a specific
class independently of the rest of the data and the rest of the codebook vectors. In contrast to the unsuper-
vised  networks,  the  output  data  indicating the  correct  class  is  also  necessary.  They  are  used  to  divide  the
input data among the different classes.

2.9 Further Reading

Many fundamental  books  on  neural  networks cover  neural  network structures  of  interest.  Some examples
are the following:

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.
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The  following book concerns  neural  network  simulation in  Mathematica.  It  does  not  give  very  much back-
ground  information  on  neural  networks  and  their  algorithms,  but  it  contains  programs  and  simulation
examples.  The  book  is  not  based  on  the  Neural  Networks  package.  Instead,  the  book  contains  the  code  for
some neural network models.

J. A. Freeman, Simulating Neural Networks with Mathematica, Reading, MA, Addison-Wesley, 1994.

System  identification  and  time-series  prediction  are  broad  and  diverse  fields,  and  there  are  many general
and specialized books on these topics. The following list contains just some samples of the vast literature.

The following are good introductory books:

R. Johansson, System Modeling and Identification, Englewood Cliffs, NJ, Prentice Hall, 1993.

L. Ljung and T. Glad, Modeling of Dynamic Systems, Englewood Cliffs, NJ, Prentice Hall, 1994.

The following books are more thorough, and they are used in graduate courses at several universities:

L. Ljung, System Identification: Theory for the User, 2nd ed., Englewood Cliffs, NJ, Prentice Hall, 1999.

T. Söderström and P. Stoica, System Identification, Englewood Cliffs, NJ, Prentice Hall, 1989.

The  following  article  discusses  possibilities  and  problems  using  nonlinear  identification  methods  from  a
user’s perspective:

J.  Sjöberg et al.,  “Non-Linear Black-Box Modeling in System Identification: A Unified Overview”, Automat-
ica, 31 (12), 1995, pp. 1691–1724.

This book is a standard reference for time-series problems:

G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, Oakland, CA, Holden-Day, 1976.

Many modern approaches to time-series prediction can be found in this book and in the references therein:

A.  S.  Weigend and N. A.  Gershenfeld,  “Time Series  Prediction:  Forecasting the Future and Understanding
the Past”, in Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis held in
Santa Fe, New Mexico, May 14–17, 1992, Reading, MA, Addison-Wesley, 1994.
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In most cases the neural network training is nothing other than minimization. It is, therefore, a good idea to
consult standard books on minimization, such as: 

R. Fletcher, Practical Methods of Optimization, Chippenham, Great Britain, John Wiley & Sons, 1987.

J.  E.  Dennis  and  R.  B.  Schnabel,  Numerical  Methods  for  Unconstrained  Optimization  and  Nonlinear  Equations,
Englewood Cliffs, NJ, Prentice Hall, 1983.
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3 Getting Started and Basic Examples

The  basic  steps  and  conventions  common  to  all  neural  network  models  contained  in  the  Neural  Networks
package are explained in this chapter. You will also find some introductory examples.

3.1 Palettes and Loading the Package

The Neural Networks  palettes contain sets of buttons that insert command templates for each type of neural
network  into  a  notebook.  Section  3.1.2,  Palettes,  explains  the  general  format  of  the  palettes.  Most  of  the
commands  described  in  the  documentation  can  be  inserted  using  a  Neural  Networks  palette.  To  evaluate
commands, the package must be loaded, as explained in Section 3.1.1, Loading the Package and Data.

3.1.1 Loading the Package and Data

The Neural Networks package is one of many available Mathematica applications, and it should be installed to
the  $BaseDirectory/Applications  or  $UserBaseDirectory/Applications  directory.  If  this  has
been  done  at  the  installation  stage,  Mathematica  should  be  able  to  find  the  application  package  without
further  effort  on your  part.  To make all  the  functionality of  the application package available at  once,  you
simply load the package with the Get, <<, or Needs command.

Load the package and make all the functionality of the application available.

In[1]:= << NeuralNetworks`

If  you  get  a  failure  message  at  this  stage,  it  is  probably  due  to  a  nonstandard  location  of  the  application
package on your system. You will  have to  check that the directory  enclosing the NeuralNetworks  direc-
tory is included in your $Path variable. Commands such as AppendTo[$Path, TheDirectoryNeuralNetworks-
IsIn] can be used to inform Mathematica how to find the application. You may want to add this command to
your Init.m file so it will execute automatically at the outset of any of your Mathematica sessions. 

All commands in Neural Networks manipulate data in one way or another. If you work on data that was not
artificially generated using Mathematica,  then you have to load the data into Mathematica. For all illustrations
in the documentation, the data is stored as Mathematica expressions and is loaded in the following way. Here
twoclasses.dat is the name of a data file that comes with the Neural Networks package.



Load a data file.

In[2]:= << twoclasses.dat;

3.1.2 Palettes

The Neural Networks package contains several palettes. As with the standard palettes that come with Mathe-
matica,  the palettes are available from the front end menu via the File @ Palettes  command. These palettes
provide you with an overview of the available commands, and their options and an easy method for insert-
ing a function template into a notebook.

The  main  palette,  shown in  the  following  screen  shot,  is  called  the  Neural  Networks  palette.  This  palette
contains one button for each neural network type supported by the package. 

The Neural Networks palette.

Clicking a button for a network type opens a subpalette that contains buttons for all functions of the chosen
network.  Function  buttons  on  a  subpalette  are  accompanied  by  buttons  that  open  palettes  of  function
options. Clicking a question-mark button opens online documentation. The following is a screen shot of the
Perceptron palette.

The Perceptron palette.

You can also access the palettes from the online documentation in the Palettes subcategory.
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3.2 Package Conventions

This section describes conventions common to all neural network types supported by Neural Networks. These
conventions for function names, data format, and trained neural network storage make it easy to work with
new types of networks once you have learned how to use one network type.

3.2.1 Data Format

To train a network, you need a set of data 8xi, yi<i=1
N  containing N  input-output pairs. All of the functions in

the  package  require  the  same  data  format.  The  input  and  output  data  are  each  arranged  in  the  form  of  a
Mathematica matrix. Each individual input vector, xi, is a vector on row i of the input data matrix, and each yi

is a vector on row i of the output data matrix. An exception to this rule is when a neural network is applied
to a single data item, in which case the data can be written as a vector rather than as a matrix.

Consider the sample data file one2twodimfunc.dat that is packaged with Neural Networks. This data item
has N = 20 input-output pairs. Each xi is a vector of length 1, and each output item is a vector of length 2. To
view the data, first load the package and then load the data file.

Load the Neural Networks package and the data file.

In[1]:= << NeuralNetworks`

In[2]:= << one2twodimfunc.dat;

In  this  data  file,  the  input  and  output  matrices  are  assigned  to  the  variable  names  x  and  y,  respectively.
Once the data set  has been loaded, you can query the data using Mathematica  commands. To better under-
stand the data format and variable name assignment, you may also want to open the data file itself.

Show the contents of the input and output matrices.

In[3]:= x

Out[3]= 880.<, 80.5<, 81.<, 81.5<, 82.<, 82.5<, 83.<, 83.5<, 84.<, 84.5<,85.<, 85.5<, 86.<, 86.5<, 87.<, 87.5<, 88.<, 88.5<, 89.<, 89.5<<
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In[4]:= y

Out[4]= 880., 1.<, 80.479426, 0.877583<, 80.841471, 0.540302<, 80.997495, 0.0707372<,80.909297, −0.416147<, 80.598472, −0.801144<, 80.14112, −0.989992<,8−0.350783, −0.936457<, 8−0.756802, −0.653644<, 8−0.97753, −0.210796<,8−0.958924, 0.283662<, 8−0.70554, 0.70867<, 8−0.279415, 0.96017<,80.21512, 0.976588<, 80.656987, 0.753902<, 80.938, 0.346635<, 80.989358, −0.1455<,80.798487, −0.602012<, 80.412118, −0.91113<, 8−0.0751511, −0.997172<<
Check the number of data items and the number of inputs and outputs for each data item.

In[5]:= Dimensions@xD
Dimensions@yD

Out[5]= 820, 1<
Out[6]= 820, 2<
The data set contains 20 data items with one input and two outputs per item. 

Look at input and output of data item 14.

In[7]:= x@@14DD
y@@14DD

Out[7]= 86.5<
Out[8]= 80.21512, 0.976588<
The  next  example  demonstrates  the  data  format  for  a  classification  problem.  A  classification problem  is  a
special type of function approximation: the output of the classifier has discrete values corresponding to the
different classes. You can work with classification as you would with any other function approximation, but
it  is  recommended  that  you  follow the  standard described  here  so  that  you can use  the  special  command
options specifically designed for classification problems.

In classification problems input data is often called pattern vectors. Each row of the input data x contains one
pattern  vector,  and  the  corresponding  row  in  the  output  data  y  specifies  the  correct  class  of  that  pattern
vector.  The  output  data  matrix  y  should  have  one  column for  each  class.  On each  row the  correct  class  is
indicated with a 1 in the correct class position, with the rest of the positions containing 0. If the classification
problem has  only  two classes,  then  you can choose to  have  only  one column in  y  and indicate  the  classes
with 1 or 0. 
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Consider the following example with three classes. The data is stored in threeclasses.dat  in which the
input matrix has been named x  and the output data is assigned to matrix y.  Although this is an artificially
generated  data  set,  imagine  that  the  input  data  contains  the  age  and  weight  of  several  children,  and  that
these children are in three different school classes. 

Load a data set.

In[9]:= << threeclasses.dat;

Look at the 25th input data sample.

In[10]:= x@@25DD
Out[10]= 82.23524, 2.15257<
The children are from three different groups. The group is indicated by the position of the 1 in each row of
the output y. 

Verify in which class child 25 belongs.

In[11]:= y@@25DD
Out[11]= 80, 1, 0<
Since there is a 1 in the second column, the 25th child belongs to the second class.

Examples of classification problems can be found in Chapter 4, The Perceptron; Chapter 11, Vector Quantiza-
tion; Section 12.1, Classification of Paper Quality; and Chapter 9, Hopfield Networks.
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3.2.2 Function Names

Most neural network types rely on the following five commands, in which * is replaced by the name of the
network type.

Initialize∗ initializes a neural network of indicated type

∗Fit trains a neural network of indicated type

NetPlot illustrates a neural network
in a way that depends on the options

NetInformation gives a string of information about the neural network

NeuronDelete deletes a neuron from an existing network

Common command structures used in the Neural Networks package.

Initialize* creates a neural network object with head equal to the name of the network type. The output
of  the  training  commands,  *Fit,  is  a  list  with  two  elements.  The  first  element  is  a  trained  version  of  the
network, and the second is an object with head *Record  containing logged information about the training.
NetPlot  can take *Record  or the trained version of the network as an argument to return illustrations of
the  training  process  or  the  trained  network.  If  NetInformation  is  applied  to  the  network,  a  string  of
information  about  the  network  is  given.  These  commands  are  illustrated  in  the  examples  in  Section  3.4.1,
Classification  Problem  Example  and  Section  3.4.2,  Function  Approximation  Example.  More  examples  can
also be found in the sections describing the different neural network types.

In  addition to  these  four  commands,  special  commands for  each neural  network type  are discussed  in the
chapter that focuses on the particular network.

3.2.3 Network Format

A trained network is identified by its head and list elements in the following manner.

   è  The head of the list identifies the type of network.

   è  The first component of the list contains the parameters, or weights, of the network.

   è  The second component of the list contains a list of rules indicating different network properties.

Consider this structure in a simple example.
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Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Create a perceptron network.

In[2]:= net = InitializePerceptron@881., −1.<, 8−1., 1.<<, 81, 0<D
Out[2]= Perceptron@8w, b<,8CreationDate → 82002, 4, 3, 13, 13, 5<, AccumulatedIterations → 0<D
The  head  is  Perceptron.  The  first  component  contains  the  parameters  of  the  neural  network  model,
indicated by the symbol {w, b}  for perceptrons. You obtain the parameters of a network by extracting the
first element.

There  are two replacement rules  in the  perceptron  object.  The one with left  side CreationDate  indicates
when  the  network  was  created,  and  the  other  one,  AccumulatedIterations,  indicates  the  number  of
training iterations that have been applied to the network. In this case it is zero; that is, the network has not
been trained at all.

Look at the parameters.

In[3]:= net@@1DD
Out[3]= 8880.958944<, 80.313997<<, 8−0.816685<<
You can store more information about a network model by adding more rules to the second component. The
following example inserts the rule NetworkName → JimsFavoriteModel  as the first element of the list
in the second component of the neural network model.

Add a name to the network.

In[4]:= Insert@net, HNetworkName → JimsFavoriteModelL, 82, 1<D
Out[4]= Perceptron@8w, b<, 8NetworkName → JimsFavoriteModel,

CreationDate → 82002, 4, 3, 13, 13, 5<, AccumulatedIterations → 0<D
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3.3 NetClassificationPlot

The  command  NetClassificationPlot  displays  classification  data  in  a  plot.  The  format  of  the  input
data x and the output data y must follow the general format described in Section 3.2.1, Data Format.

NetClassificationPlot@x, yD plots data vectors x with the correct class indicated in y

NetClassificationPlot@xD plots data vectors x without any information about class

Display of classification data in a plot.

NetClassificationPlot has one option, which influences the way the data is plotted.

option default value

DataFormat Automatic indicates how data should be plotted

Option of NetClassificationPlot.

DataFormat can have one of the following two values:

   è  DataMap produces a two-dimensional plot based on MultipleListPlot. If the class information 
is submitted, different plot symbols will indicate the class to which the input belongs. This option is 
the default for two-dimensional data.

   è  BarChart produces a bar chart illustrating the distribution of the data over the different classes 
using the command BarChart. If the dimension of the input data is larger than two, then the 
default DataFormat is a bar chart. This type of plot allows you to see how the data is distributed 
over the classes.

You  can  influence  the  style  of  the  plotting  with  any  options  of  the  commands  MultipleListPlot  and
BarChart.

The next set of examples shows typical plots using two-dimensional data.

Load the Neural Networks package and demonstration data.

In[1]:= <<NeuralNetworks`

In[2]:= << twoclasses.dat;
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The input data is stored in x and the output data in y. 

Make a two-dimensional plot of the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@0.5D, Hue@0.8D<D
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The color of the data was changed using the option SymbolStyle of MultipleListPlot.

Illustrate the distribution of the data over the classes in a bar chart.

In[4]:= NetClassificationPlot@x, y, DataFormat → BarChart, BarStyle → 8Hue@0.7D, Hue@0.5D<D
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There are, therefore,  20 data samples in each of the two classes. The data is distributed evenly between the
classes. The option BarStyle was used to change the colors of the bars.
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For  higher-dimensional  data,  you  can  also  try  to  plot  projections  of  the  data.  The  next  data  set  has  three
classes, but there are also three input dimensions.

Load new data.

In[5]:= << vqthreeclasses3D.dat;

Check the dimensionality of the input space.

In[6]:= Dimensions@xD
Out[6]= 860, 3<
Three  input  dimensions cannot  be  plotted  in  a  two-dimensional  plot.  Instead  take  the  scalar  product  of  x
with a 3 × 2 matrix and then plot the resulting two-dimensional projection of the input data. In the following
example, the first two dimensions of the input data are plotted. The plot symbols indicate the class y.

Project and plot the data.

In[7]:= NetClassificationPlot@x . 881, 0<, 80, 1<, 80, 0<<, yD
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3.4 Basic Examples

Each neural network problem follows the same basic steps: (1) load the data set; (2) initialize the network; (3)
train the network; and (4) validate the model. Here the basic steps common to all neural network problems
are  elucidated  with  two  examples:  a  classification  problem  and  a  function  approximation  problem.  The
options that  alter  or  go beyond the  basic  steps  are  particular  to  the  neural  network  model  and so are  dis-
cussed in later chapters. A detailed discussion of the meaning and manipulation of NeuralFit  output can
be found in the chapters that discuss individual network types.

3.4.1 Classification Problem Example

This  subsection  describes  a  small  classification  problem.  This  two-dimensional  example  is  instructive
because the data and the classifier can be visualized very easily. The data used in this example is stored in
the file twoclasses.dat  in which the input is stored in the matrix x and the output in y.  To help under-
stand the problem, assume that the input data is the age and weight of several children, and the output data
represents the class to which each child belongs. There are two possible classes in this example.

Load the Neural Networks package and the data.

In[1]:= <<NeuralNetworks`

In[2]:= << twoclasses.dat;

Because there are two possible classes, the output can be stored in one column, with a 1 or 0 indicating the
class to which a child belongs. For a general discussion of data format, see Section 3.2.1, Data Format.

View the output data.

In[3]:= y

Out[3]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
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Plot the data, setting the axes labels according to the names of the measured values.

In[4]:= NetClassificationPlot[x,y,FrameLabel→{"Age","Weight"},SymbolStyle→
{Hue[0.6],Hue[0.8]},RotateLabel→False]
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The plot clearly shows that the data is divided into two classes, and that it should be possible to divide the
groups  with  a  curve  found  during  the  training  process.  The  successfully  trained  neural  network  classifier
will return the correct group to which a child belongs, given the child’s weight and age.

A  measure  of  fit,  or  performance  index,  to  be  minimized  by  the  training  algorithm,  must  be  chosen  for  the
training  to  proceed.  For  classification  problems,  the  criterion  is  set  to  the  number  of  incorrectly  classified
data samples. The classifier has correctly classified all data when the criterion is zero.

A  perceptron  is  the  simplest  type  of  neural  network  classifier.  It  is  used  to  illustrate  the  training  in  this
example. You can initialize a perceptron with InitializePerceptron  and then use PerceptronFit  to
train  the  perceptron.  However,  perceptron  initialization  will  take  place  automatically  if  you  start  with
PerceptronFit.
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Initialize and train a perceptron classifier using the data.

In[5]:= 8per, fitrecord< = PerceptronFit@x, yD;

0 1 2 3 4 5 6 7 8 9 10111213
Iterations

0

5

10

15

20
SSE

Note that you will usually obtain slightly different results if you repeat the training command. This is due to
the  random  initialization  of  the  perceptron,  which  is  described  in  Section  4.1.1,  InitializePerceptron.  As  a
result  of  this,  the  parametric  weights of  the  perceptron  will  also  be  different  for  each evaluation, and you
will obtain different classifiers.

During  the  evaluation  of  PerceptronFit,  a  separate  notebook  opens  and  displays  the  progress  of  the
training.  At  the  end  of  the  training,  a  summary  of  the  training  process  is  shown  in  the  plot  of  summed
squared error (SSE) versus iteration number. The preceding plot is the summary of the training process for
this example. You can see that the SSE tends toward 0 as the training goes through more iterations.

The first output argument of PerceptronFit is the trained perceptron per in this case. The second output
argument,  equal  to  fitrecord  in  this  example,  is  a  training  record  that  contains  information  about  the
training procedure. See Section 7.8, The Training Record, for a description of how the training record can be
used to analyze the quality of training. See  Chapter 4, The Perceptron,  for  options that change the training
parameters and plot.

The perceptron’s training was successful, and it can now be used to classify new input data.

Classify a child of age six and weight seven.

In[6]:= per@86., 7.<D
Out[6]= 81<
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You can also evaluate the perceptron on symbolic inputs to obtain a Mathematica  expression describing the
perceptron  function.  Then  you  can  combine  the  perceptron  function  with  any  Mathematica  commands  to
illustrate the classification and the classifier.

Obtain a Mathematica expression describing the perceptron.

In[7]:= Clear@a, bD;
per@8a, b<D

Out[8]= 8UnitStep@−168.948 + 63.7735 a + 64.0374 bD<
Note that the numerical values of the parameter weights will be different when you repeat the example.

NetPlot can be used to illustrate the trained network in various ways, depending on the options given. The
trained classifier can, for example, be visualized together with the data. This type of plot is illustrated using
the results from the two-dimensional classifier problem. For this example, a successful classifier divides the
two classes with a line. The exact position of this line depends on what particular solution was found in the
training. All lines that separate the two clusters are possible results in the training.

In[9]:= NetPlot@per, x, yD
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NetPlot can also be used to illustrate the training process by applying it to the training record, the second
argument of PerceptronFit.
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Illustrate the training of the perceptron.

In[10]:= NetPlot@fitrecord, x, yD
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The plot shows the classification of the initial perceptron and its improvement during the training.

The perceptron is described further in Chapter 4, The Perceptron, and you can find a list of neural networks
that can be used for classification problems in Section 2.1, Introduction to Neural Networks.

3.4.2 Function Approximation Example

This  subsection  contains  a  one-dimensional  approximation problem  solved  with  a  FF  network.  Higher-di-
mensional problems, except for the data plots, can be handled in a similar manner.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Load data and Mathematica’s matrix add-on package.

In[2]:= <<onedimfunc.dat;
<< LinearAlgebra`MatrixManipulation`

Chapter 3: Getting Started and Basic Examples 49



The file onedimfunc.dat  contains the input  and output  data in  the  matrices  defined as x  and y,  respec-
tively.  It  is  assumed that  the  input-output  pairs  are  related by  y = f HxL,  where  f  is  an unspecified  function.
The data will be used to train a feedforward network that will be an approximation to the actual function f. 

To motivate the use of a neural network, imagine that both x and y are measured values of some product in
a  factory,  but  y  can  be  measured  only  by  destroying  the  product.  Several  samples  of  the  product  were
destroyed to obtain the data set. If a neural network model can find a relationship between x and y based on
this  data,  then  future  values  of  y  could  be  computed  from  a  measurement  of  x  without  destroying  the
product.

Plot the data.

In[4]:= ListPlot@AppendRows@x, yD, PlotStyle → PointSize@0.03DD
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This  is  a  very  trivial  example;  the  data  was  generated  with  a  sinusoid.  A  feedforward  network  will  be
trained  to  find  such  an approximation.  More  information on  this  kind  of  neural  network  can  be  found  in
Chapter 5, The Feedforward Neural Network.

Initialize a feedforward network with three neurons.

In[5]:= fdfrwrd = InitializeFeedForwardNet@x, y, 83<D
Out[5]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 16, 51<,
OutputNonlinearity → None, NumberOfInputs → 1<D
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Train the initialized network.

In[6]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, yD;
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Note  that  you  will  usually  obtain  slightly  different  results  if  you repeat  the  initialization and  the  training
command. This is due to the partly random initialization of the feedforward network, which is described in
Section 5.1.1, InitializeFeedForwardNet.

As  with  the  previous  example,  the  improvement  of  the  fit  is  displayed  in  a  separate  notebook during  the
training process. At the end of the training, the fit improvement is summarized in a plot of the RMSE in the
neural network prediction versus iterations. NeuralFit  options allow you to change the training and plot
features. At the end of the training, you will often receive a warning that the training did not converge. It is
usually  best  to  visually  inspect  the  RMSE  decrease  in  the  plot  to  decide  if  more  training  iterations  are
needed. How this can be done is illustrated in Section 5.2.1, Function Approximation in One Dimension. For
now, assume that the network has been successfully trained, though later you can plot the model to compare
it to the data.

The  first  output  argument  of  NeuralFit  is  the  trained  feedforward  network.  The  second  argument  is  a
training record  containing information about the training procedure.  See  Section 7.8,  The Training Record,
for a discussion of how to use the training record to analyze the quality of training.

The trained neural network can now be applied to a value x to estimate y = f(x).

Produce an estimate for y when x=3.

In[7]:= fdfrwrd2@83<D
Out[7]= 80.241326<
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To obtain a Mathematica  expression describing the network, apply the network to symbolic input. Then you
can use Mathematica commands to plot and manipulate the network function.

Obtain a Mathematica expression describing the network.

In[8]:= Clear@aD;
fdfrwrd2@8a<D

Out[9]= 90.648702 − 1.7225
cccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ10.3493−3.06279 a

−
1.77352

cccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ21.1303−2.31796 a

+
2.26213

cccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ12.3109−1.93971 a

=
The  special  command NetPlot  illustrates  the  trained  neural  network  in  a  way  indicated  with  the  option
DataFormat. For one- and two-dimensional problems you can use it to plot the neural network function.

Plot the function estimate together with the data.

In[10]:= NetPlot@fdfrwrd2, x, y, DataFormat → FunctionPlot,
PlotStyle → 8Hue@0.9D, PointSize@0.03D<D
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Depending on the option DataFormat, NetPlot uses different Mathematica  plot commands, and you may
submit any options of these commands to change the way the result is displayed. For example, in the illus-
trated plot the color was changed.
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4 The Perceptron

The perceptron is the simplest type of neural network, and it is typically used for classification. 

Perceptron classifiers are trained with a supervised training algorithm. This means that the true class of the
training  data  must  be  available  so  that  they  can  be  submitted  to  the  training function.  If  a  data  sample  is
incorrectly classified then the algorithm modifies the network weights so that performance improves. This is
an iterative training process that continues until the perceptron correctly classifies all data or the upper limit
of training iterations is reached.

It  is  often  possible  to  use  a  smart  initialization of  the  weights  of  the  perceptron  so  that  the  extent  of  the
iterative training may be minimized or entirely circumvented. 

A  short  tutorial  about  the  perceptron  is  given  in  Section  2.4,  The  Perceptron.  Section  4.1,  Perceptron  Net-
work Functions and Options, defines the commands and the options to work with perceptron networks, and
in Section 4.2,  Examples,  you can find examples  illustrating the  commands.  A small introductory example
also appears in Section 3.4.1, Classification Problem Example.

4.1 Perceptron Network Functions and Options

This  section  describes  the  functions  to  initialize,  train,  and  use  perceptrons.  Examples  can  be  found  in
Section 4.2, Examples.

4.1.1 InitializePerceptron

A  perceptron  model  can  be  initialized  with  InitializePerceptron  and  then  trained,  or  fitted,  to  the
data with PerceptronFit. You can also call PerceptronFit without an initialized perceptron model. In
this case, the initialization is done internally.

InitializePerceptron is called in the following way.



InitializePerceptron@x, yD
initializes a perceptron of the appropriate
dimensionality according to the supplied data,
x-input data vectors, and y-outputs

Initializing a perceptron network.

The result is placed in an object of type Perceptron.  In the first position, you find the parametric weights8w, b<, as described in Section 2.4, The Perceptron. In the multi-output case, there is one column in w and one
component in b for each of the outputs.

The  perceptron  automatically  assumes  as  many  inputs  as  the  dimensionality  of  the  input  data  x,  and  as
many outputs as the dimensionality of the output data y.

InitializePerceptron takes one option.

options default value

RandomInitialization True indicates random initialization

Option of InitializePerceptron.

If  the  option  is  set  to  False,  a  smart  initialization is  used,  which  sets  the  parametric  weights  so  that  the
initial classifier is placed between the data clusters. In the multi-output case, the weights of each output are
initialized in this way. This often gives such a good initial perceptron model that no training is necessary.

4.1.2 PerceptronFit

The  command  PerceptronFit  is  used  to  train  a  perceptron.  It  can  be  called  with  an  already-existing
perceptron model that is then trained, or it can be called with only data, in which case a perceptron will first
be initialized. If the number of iterations is not specified, it will assume a default value of 100 or stop sooner
when all patterns are correctly classified.
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PerceptronFit@x, yD initializes and trains a perceptron
with the default number of iterations

PerceptronFit@x, y, iterationsD initializes and trains a perceptron
with the indicated number of iterations

PerceptronFit@x, y, perceptronD trains the submitted perceptron
with the default number of iterations

PerceptronFit@x, y, perceptron, iterationsD trains the submitted perceptron
with the indicated number of iterations

Training a perceptron network.

PerceptronFit  returns a list containing two elements. The first element is the trained perceptron and the
second is an object of type PerceptronRecord,  which contains information of the training session. It  can
be used to  evaluate the quality of  the  training using the command NetPlot.  The structure  of the training
record is explained in Section 7.8, The Training Record.

An existing perceptron can be submitted for more training by setting perceptron equal to the perceptron or its
training  record.  The  advantage  of  submitting  the  training  record  is  that  the  information  about  the  earlier
training is combined with the additional training.

During the  training,  intermediate  results  are  displayed in  a  separate  notebook,  which is  created  automati-
cally.  After  each training iteration the number  of  misclassified training patterns is  displayed together with
the iteration number. At the end of the training, this information is shown in a plot. By changing the options,
as described in Section 7.7, Options Controlling Training Results Presentation, you can change or switch off
this information about the training.

PerceptronFit takes the following options.

options default values

RandomInitialization True indicates that random
initialization should be used

StepLength Automatic sets the step length h for the training
algorithm to any nonnegative numerical value

CriterionPlot True plots the improvement of the classifier as a
function of iteration number after the training
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CriterionLog True writes out the intermediate
classification result during training

CriterionLogExtN True writes out the intermediate
classification result in an external notebook

ReportFrequency 1 logs the intermediate
results with the indicated interval

MoreTrainingPrompt False prompts for more
training iterations if set to True

Options of PerceptronFit.

If  StepLength→Automatic  then  it  is  set  according  to  Equation  2.6  in  Section  2.4,  The  Perceptron.  That
default value is good for a large variety of problems. You can, however, supply any other positive numerical
value.

The  options  CriterionPlot,  CriterionLog,  CriterionLogExtN,  ReportFrequency,  and  Moreg
TrainingPrompt  influence the way the results  of PerceptronFit  are presented and they are similar to
the  other  training  commands  in  the  Neural  Networks  package.  They  are  described  in  Section  7.7,  Options
Controlling Training Results Presentation. 

A derived perceptron can be applied to new input vectors using function evaluation.

per@xD evaluates the perceptron per on the input vector x

Function evaluation of a perceptron network.

The input argument x can be a vector containing one input vector or a matrix containing one input vector on
each row.

4.1.3 NetInformation

Some information about a perceptron is presented in a string by the function NetInformation.

NetInformation@perD writes out information about a perceptron

The NetInformation function.
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 4.1.4 NetPlot 

NetPlot  can  be  used  to  illustrate  a  perceptron,  its  classification,  and  its  training.  Depending  on  how  the
option DataFormat is set, you can illustrate the classification and the training in different ways.

NetPlot@per, x, yD illustrates the classification result for the given
perceptron model with the submitted x input y output data

NetPlot@per, xD illustrates the classification result for the
given perceptron model with only input data

NetPlot@fitrecord, x, yD illustrates the classifier during training

NetPlot@fitrecord, xD illustrates the classifier during training with only input data

Display of perceptrons and training of perceptrons.

If the output data y  is submitted then the correct class and the class according to the perceptron model can
be  indicated.  For  two-dimensional  problems  the  default  is  to  plot  the  data  and  the  border  line(s)  of  the
classifier. For higher-dimensional data the result is represented with bar charts.

NetPlot takes the following options when it is applied to a perceptron network.

options default values

DataFormat Automatic indicates the way in which the data should be illustrated;
the default depends on the dimension of the dataHpossibilities are described in the following paragraphsL

Intervals 5 number of iterations between displayed plots

BoundaryDash True specifies if the boundaries at different stages of the training
should be illustrated with longer dashes as training proceeds

Compiled True use compiled version

Options of NetPlot.
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The option DataFormat takes the following values:

   è  DataMap is the default for two-dimensional problems, producing a plot of data along with the class 
discriminant. If a training record is submitted, then the class discriminant for the intermediate 
classifiers during training are also plotted. The option Intervals can be used to set the frequency 
of the intermediate classifiers.

   è  BarChart illustrates the classification result with a bar chart.

   è  ClassPerformance is the default if a training record is supplied instead of a perceptron and when 
the input dimension is larger than two. The classification performance is plotted against training 
iterations with one plot for each class. Each plot indicates the classification performance versus 
training iterations for one specific class. The solid line indicates the number of correctly classified 
data samples to that class, and the dashed line indicates the number of incorrectly classified data 
samples to that class.

   è  DataMapArray gives a graphics array of the progress of the classification during training. This 
applies only to two-dimensional problems and when a training record is submitted.

The  last  two possibilities are  encountered only  when NetPlot  is  applied to  a  training record.  The option
BoundaryDash  is  active  only  when  DataFormat→DataMap  and  when  NetPlot  is  applied  to  a  training
record.

Depending on the  value  of  DataFormat,  NetPlot  uses  the  Mathematica  command MultipleListPlot,
BarChart, or BarChart3D, and you can modify the plot by submitting the related options.

With  DataFormat→BarChart  the  classification  result  is  illustrated  with  a  three-dimensional  bar  chart
indicating class according to output data and class according to the perceptron model. The height of the bar
at position 8n, m< illustrates the number of data objects belonging to class n according to the supplied output,
and  classified  to  class  m  by  the  perceptron.  Therefore,  the  bars  on  the  diagonal  correspond  to  correctly
classified data.

If  no  output  is  submitted,  then  only  the  classification  according  to  the  model  can  be  given,  and  the  plot
illustrates how the input data is distributed over the classes according to the classification of the perceptron.
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4.2 Examples

This  subsection  gives  some  simple  examples  where  perceptrons  are  used  to  classify  data  from  different
classes.  Remember  that  the  perceptron  is  a  very  simple  type  of  classifier  and  in  most  real  problems  you
might need more advanced models.

The  first  two examples  use  two-dimensional input  data.  This  is  helpful  because  the  data and the  classifier
can be depicted graphically. In the first example there are only two classes, which can be separated using a
perceptron  with  one  output.  The  second  example  handles  three  classes,  and  you  need  a  perceptron  with
three outputs. This is equivalent to three single-output perceptrons in parallel. 

The  third  example  considers  classification  in  a  three-dimensional  space.  The  main  difference  from  the
two-dimensional classification is that you cannot properly plot the data.

Notice that if you re-evaluate the examples you will not receive exactly the same results due to the random
initialization used in training perceptron networks. See Section 4.1.1, InitializePerceptron.

4.2.1 Two Classes in Two Dimensions

Consider a two-dimensional classification problem. First the package and a data set are loaded.

Load the Neural Networks package and a data set.

In[1]:= <<NeuralNetworks`

In[2]:= << twoclasses.dat;

The input data is stored in x and the output in y. The data format follows the standard form of the package
as described  in Section  3.2,  Package Conventions.  The data set  is  the  same as the one described in Section
3.4.1, Classification Problem Example. 

The starting point should always be to look at the data.
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Look at the data.

In[3]:= NetClassificationPlot[x,y,SymbolStyle→{Hue[.5],Hue[.9]}]
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The  two  classes  are  distinguished  by  different  labels  according  to  the  information  in  the  output  y.  The
positions of the different patterns are given by the input x. 

You can now fit a perceptron classifier to the data. In other words, you train a perceptron to divide the data
in the correct manner. 

Initialize and train a perceptron using five iterations.

In[4]:= 8per, fitrecord< = PerceptronFit@x, y, 5D;
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PerceptronFit::NotConverged :  

No solution found. The problem might not be linearly
separable or you may need more iterations.
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Since the perceptron did not learn to classify all the training data correctly, a warning is given at the end of
the training. The cause of the failure might be that the perceptron is too simple a classifier for the problem at
hand,  or  that  it  needs  more  training  iterations.  You  can  repeat  the  previous  command  with  an  increased
number of iterations, or you can submit the trained perceptron for more training. 

More  training  can  be  applied  to  an  existing  perceptron  in  two  ways:  by  submitting  the  perceptron  or  by
submitting its training record. The advantage of submitting the training record is that the information about
the  new training will  be  combined  with  the  earlier  training and added  in  the  new training record.  In  this
way it is possible to examine all the training more easily. This is illustrated here.

Train the perceptron with another 10 iterations.

In[5]:= 8per, fitrecord2< = PerceptronFit@x, y, fitrecord, 10D;
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Now the perceptron has learned to classify all of the training data. Not all of the specified training iterations
were necessary (in addition to the first  five iterations). Notice that these results  may turn out differently if
you re-evaluate the commands due to the random initialization. You may need more iterations.

The  SSE  is  computed  at  each iteration and displayed in  a  separate  notebook.  At  the  end of  the  training,  a
plot is produced in the main notebook showing the SSE reduction as a function of iteration number. These
features  may  be  changed  by  setting  different  options  in  the  call  to  PerceptronFit.  This  is  described  in
Section 7.7, Options Controlling Training Results Presentation. 

Provide some information about the perceptron.

In[6]:= NetInformation[per]

Out[6]= Perceptron model with 2 inputs and 1 output. Created 2002−4−3 at 13:19.
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The trained perceptron can be used to classify data input vectors by just applying the perceptron object  to
these vectors. The output is 0 or 1, depending on the class to which the input vectors belong.

Classify two new input vectors.

In[7]:= per@881., 1.2<, 85.1, 5.3<<D
Out[7]= 880<, 81<<
The  training progress  of  the  perceptron  can  be  illustrated  with  the  command NetPlot  in  different  ways,
depending  on  the  option  DataFormat.  The  default  for  two-dimensional  problems  is  to  plot  the  data
together with the classification boundary.  The length of the dashes illustrates the stage of the training. The
final classification boundary is indicated with a solid line.

Display the training progress of the classification.

In[8]:= NetPlot@fitrecord2, x, y, Intervals → 3, SymbolStyle → 8Hue@.5D, Hue@.9D<D
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It  is  only  in  two-dimensional  problems  that  the  classifier  can  be  illustrated  with  plots  showing  the  data
points and the class boundary. In higher-dimensional problems you can instead plot the number of correctly
and incorrectly classified data samples over all the classes as a function of the number of training iterations.
Of course, this can also be done in two-dimensional problems.

Notice that the final classification boundary barely cleared the last element of the star class displayed in the
plot.  Intuitively it  seems better  to  have the classification boundary in the middle between the classes.  It  is,
however, a feature of the perceptron training algorithm that the training terminates as soon as all the train-

62 Neural Networks



ing data is classified correctly, and the classification boundary may then be anywhere in the gap between the
classes.

Look at the number of correctly and incorrectly classified data objects to each class versus training iterations.

In[9]:= NetPlot@fitrecord2, x, y, DataFormat → ClassPerformanceD
Correctlyêincorrectly classified data
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Each plot indicates the classification performance versus training iterations for one specific class.  The solid
line  indicates  the  number  of  correctly  classified  data  objects  assigned  to  that  class,  and  the  dashed  line
indicates the number of samples from other classes that are incorrectly classified to the class.
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The classification result can also be illustrated with bar charts. On the x and y axes you have the class of the
samples according to the output data and according to the perceptron classifier, and on the z axis you have
the number of samples. For example, in the bin H2, 1L  is the number of data samples from the second class,
according to the supplied output data, that were classified into the first class by the network. Therefore, the
diagonal represents correctly classified data and the off-diagonal bars represent incorrectly classified data.

Display the classification of the trained perceptron with bar charts.

In[10]:= NetPlot@per, x, y, DataFormat → BarChartD
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The  success  of  the  classifier  depends  on the  data  and on the  random initialization of  the  perceptron.  Each
time  PerceptronFit  is  called,  without  an  already-initialized  perceptron,  a  new  random  initialization  is
obtained. Repeat the last command a couple of times to see how the training will evolve differently because
of the different initial weights.

You  can  change  the  step  length,  described  in  Equation  2.6  in  Section  2.4,  The  Perceptron,  by  setting  the
option StepLength to any positive value.
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Train a new perceptron with a different step length.

In[11]:= 8per, fitrecord< = PerceptronFit@x, y, StepLength → 2.D;
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The warning message at the end of the training informs you that the perceptron did not succeed to learn to
classify the training data correctly. You could continue with more training iterations, change the step length,
or  just  repeat  the  command, which then gives  a  new initialization from which the  training might  be more
successful.

It is easy to extract the weights of a perceptron since they are stored in the first element. In the same manner
you can insert  new values  of  the  weights.  This  is  further  described  in  Section  13.1,  Change the  Parameter
Values of an Existing Network.

Extract the perceptron weights.

In[12]:= w = MatrixForm@per@@1, 1DDD
b = MatrixForm@per@@1, 2DDD

Out[12]//MatrixForm=J 1.27812
0.963722

N
Out[13]//MatrixForm=H −3.2454 L

Intelligent Initialization

The classification problem considered in this example is not very hard. Actually, most problems where the
perceptron can be used are fairly easy “toy” problems. To illustrate this, the data can be used for the initializa-
tion  of  the  perceptron  as  described  in  connection  with  Section  4.1.1,  InitializePerceptron.  You  can  use  the
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smart initialization by setting the option RandomInitialization→False,  and often there is no need for
any additional training when this initialization is used. 

Initialize and train a perceptron using the smart initialization.

In[14]:= 8per, fitrecord< =

PerceptronFit@x, y, 5, CriterionLog → False, RandomInitialization→ FalseD;
PerceptronFit::InitialPerfect :  The initialized perceptron

classifies all data correctly, no iterative learning is necessary.

The  message  given  tells  you that  the  initialized perceptron  correctly  classifies  all  training data  and,  there-
fore, no iterative training is necessary. This can also be seen clearly if you plot the result.

Plot the perceptron classifier together with the data.

In[15]:= NetPlot[per,x,y,SymbolStyle→{Hue[.5],Hue[.9]}]
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You can also check the  performance  by evaluating the  perceptron  on the  training data and comparing the
output  with  the  true  output.  If  you  subtract  the  classification  result  from  the  true  output,  the  correctly
classified data samples are indicated with zeros.

Check the performance of the initialized perceptron.

In[16]:= Flatten@per@xDD − y
Out[16]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
Are there any incorrect ones? 
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4.2.2 Several Classes in Two Dimensions

There  were  only  two  classes  in  the  previous  example.  Therefore,  one  output  was  sufficient  to  classify  an
input pattern vector to one of two classes, identified by 0 and 1. Consider now an example with more than
two classes.  To keep things simple a problem with three classes is chosen. A perceptron  needs one output
for each class, that is, you need a perceptron with three outputs. This is equivalent to having three single-out-
put  perceptrons  in  parallel.  Each  output  indicates  by taking the  value 1  or  0  whether  a  pattern belongs to
that class or not. Notice that there is no a priori problem for a pattern to belong to no class at all or to several
classes simultaneously. It is up to you as a user to decide what to do in such cases.

Load the Neural Networks package and the data.

In[1]:= <<NeuralNetworks`

In[2]:= << threeclasses.dat;

Check the dimensions of the data.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 860, 2<
Out[4]= 860, 3<
There are 60 data samples, two inputs, and three outputs.

Look at the data.

In[5]:= NetClassificationPlot[x,y,SymbolStyle→{Hue[.5],Hue[.7],Hue[.9]}]
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By analogy to the data in Section 3.4.1, Classification Problem Example, this data could correspond to scaled
values of age and weight for children from three different groups.

Check the age, weight, and class of the 25th child.

In[6]:= x@@25DD
y@@25DD

Out[6]= 82.23524, 2.15257<
Out[7]= 80, 1, 0<
It belongs to the second class since there is a 1 in the second column of y.

The  number  of  perceptron  inputs  and  outputs  do  not  have  to  be  specified  in  the  function  call.  They  are
implied by the number of columns in x and y. Therefore, the command to initialize and train the perceptron
is given as before.

Initialize and train a perceptron.

In[8]:= 8per, fitrecord< = PerceptronFit@x, yD;
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The perceptron can be used to classify any input vector by using the evaluation rule of the perceptron object.
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Classify some data vectors using the trained perceptron.

In[9]:= per[x[[{1,5,10,15,20,30,40,50,60}]]]

Out[9]= 881, 0, 0<, 81, 0, 0<, 81, 0, 0<, 81, 0, 0<,81, 0, 0<, 80, 1, 0<, 80, 1, 0<, 80, 0, 1<, 80, 0, 1<<
Check how the perceptron performs on the data.

In[10]:= NetPlot[per,x,y,SymbolStyle→{Hue[.5],Hue[.7],Hue[.9]},ContourStyle→
{Hue[.5],Hue[.7],Hue[.9]}]
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Notice that each output of the perceptron gives a boundary line, indicating one class. There are some areas
in the plot that belong to two classes, and the area in the center does not belong to any of the classes. There is
no a priori way to handle these ambiguities. Instead, they are artifacts of the perceptron classifier, and it is
up to you as a user to decide  how to handle these areas. However, it  does not necessarily have to be a big
problem. On this data, for example, there are no data items in the ambiguous areas where no clear decision
can be taken.

As  in the  previous  example,  if  you want  to  see  how the  perceptron  classifier  evolved  during the  training,
you submit the training record instead of the trained perceptron in the call to NetPlot.
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Display the training progress of the classification.

In[11]:= NetPlot@fitrecord, x, y, Intervals → 3, SymbolStyle → 8Hue@.5D, Hue@.7D, Hue@.9D<,
ContourStyle → 8Hue@.5D, Hue@.7D, Hue@.9D<D
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The plot shows the classification lines between the classes at different stages of the training. Since the plot is
quite messy, it might be more interesting to look at the development of the classification result for each class.
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Look at the number of correctly and incorrectly classified samples assigned to each class versus training iteration.

In[12]:= NetPlot@fitrecord, x, y, DataFormat → ClassPerformanceD
Correctlyêincorrectly classified data
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You have one plot for each class. In each plot, a solid line indicates the number of samples of this class that
are correctly classified, and a dashed line indicates the number of samples incorrectly classified to this class.
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4.2.3 Higher-Dimensional Classification

Classification in higher-dimensional problems,  that is,  when the dimension of  the input pattern x  is higher
than two,  can be  done in the  same way as the  two-dimensional problems.  The main difference  is  that you
can no longer illustrate the result with nice plots. Instead, you can view the data at various two-dimensional
projections.  It  is  also  possible  to  look  at  how the  data  is  distributed  among the  classes.  This  may be  done
using the commands in the Neural Networks package as illustrated next.

Load the Neural Networks package and the data.

In[1]:= <<NeuralNetworks`

In[2]:= << threeclasses3D.dat;

The input patterns are placed in the matrix x and the output in y.

Check the dimensions of the data.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 840, 3<
Out[4]= 840, 3<
There are 40 data samples.  The input matrix x  has three columns, which means that the data is  in a three-
dimensional  space.  The  output  y  also  consists  of  three  columns,  which  means  that  the  perceptron  should
have three outputs, one for each class.

By analogy to the data in Section 3.4.1, Classification Problem Example, this data could correspond to (scaled
values of) the age, weight, and height of children from three different groups.

The main difference compared to two-dimensional problems is that you cannot look at the data in the same
way. It  is,  however,  possible to look at  projections of  the data. To do that,  you need a projection matrix of
dimensions #inputs × 2.
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Look at a projection of the data.

In[5]:= NetClassificationPlot[x . {{1,0},{0,1},{0,0}},y,SymbolStyle→
{Hue[.5],Hue[.7],Hue[.9]}]
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There are obviously 20 data samples of class two and ten of classes one and three.

You can now train a perceptron with this data set.

Train the perceptron.

In[6]:= 8per, fitrecord< = PerceptronFit@x, yD;
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Success of the training depends on the initial weights of the perceptron. If you repeat the command, you will
likely obtain slightly different results.
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You can use the training record to investigate the training process.

Plot the number of correctly and incorrectly classified data vectors of each class.

In[7]:= NetPlot@fitrecord, x, y, Intervals → 3D
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You can also illustrate the classification during training with a bar chart. The result is a graphics array.
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Check the evolvement of the classifier during the training.

In[8]:= NetPlot@fitrecord, x, y, Intervals → 5, DataFormat → BarChartD
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Iteration: 8
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If  you  prefer  an  animation  of  the  training  progress,  you  can  load  <<Graphics`Animation`  and  then
change  the  command  to  Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1,  Datag
Format→BarChart,DisplayFunction→Identity]].

If you are interested only in the end result, you submit the perceptron instead of the training record.

Look at only the end result.

In[9]:= NetPlot[per,x,y]
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If the classification is perfect, then all samples should be on the diagonal of the three-dimensional bar chart.
The size of the off-diagonal bars corresponds to the number of misclassified samples.

If you cannot see all the bars properly, you can repeat the command and change the viewpoint. This is most
easily done by using the menu command 3D ViewPoint Selector. 

Change the viewpoint.

In[10]:= NetPlot[per,x,y,ViewPoint→{2.354, -4.532, 6.530}]
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If  the  output  y  is  not  supplied,  the  distribution  between  the  classes  according  to  the  perceptron  model  is
given.
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Illustrate the classification without any output.

In[11]:= NetPlot@per, x, DataFormat → BarChartD
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However, if you do not supply any output data, the graph cannot indicate which data samples are correctly
and  incorrectly  classified.  Instead,  you  can  see  only  the  distribution  over  the  classes  according  to  the
perceptron.

4.3 Further Reading

The perceptron is covered in most books on neural networks, especially the following:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.
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5 The Feedforward Neural Network

This chapter describes FF neural networks, also known as backpropagation networks and multilayer percep-
trons.  Definitions,  commands,  and  options  are  discussed  in  Section  5.1,  Feedforward  Network  Functions
and Options, and examples may be found in Section 5.2, Examples. A short tutorial introducing FF networks
can  be  found  in  Section  2.5.1,  Feedforward  Neural  Networks.  Chapter  13,  Changing  the  Neural  Network
Structure,  describes  how  you  can  use  the  options  and  other  ways  to  define  more  advanced  network
structures.

FF networks have a  lot in  common with those in Chapter  6,  The Radial Basis  Function Network.  They are
used for the same types of problems, and they use the same training algorithms (see Section 2.5.3, Training
Feedforward and Radial Basis Function Networks).

The Neural Networks package supports the use of FF networks in three special types of problems, as follows:

   è  Function approximation

   è  Classification

   è  Modeling of dynamic systems and time series

This section illustrates the first two applications. Dynamic neural network models are described in Chapter
8,  Dynamic  Neural  Networks.  However,  because  the  dynamic  neural  network  models  are  based  on  FF
networks, they will also be examined here.

The Neural  Networks  package offers  several  important features  for  FF networks,  most of  which are uncom-
mon in  other  neural  network  software  products.  These  features  are  listed  here  with  links  to  places  where
more detailed descriptions are given.

Initialization:  There are special initialization algorithms that give well-initialized neural networks. You can
obtain an initialization with better performance from these than from one derived from a linear model. After
initialization the performance is improved by the training.

Fixed parameters: You do not have to train all parameters. By keeping some of them fixed to values of your
choice,  you  can  obtain  special  model  structures  that  are,  for  example,  linear  in  some  parameters.  This  is
described in Section 13.2, Fixed Parameters.



Different  neuron  activation  function:  You  can  specify  any  nonlinear  activation  function  for  the  neuron.
This is described in Section 13.3, Select Your Own Neuron Function.

Regularization and stopped search:  These  techniques help you to  obtain models that  generalize better  on
new data. This is covered in Section 7.5, Regularization and Stopped Search.

Linear  models:  You  can  obtain  linear  models  by  specifying  an  FF  network  without  hidden  layers.  The
subsection Section 2.5.1, Feedforward Neural Networks, discusses why this might be a good choice.

Linear  model  in  parallel  to the  network:  You can choose to  have  a  linear  model  in  parallel  to  the  neural
network by setting the option LinearPart to True in InitializeFeedForwardNet of the FF network.

Several of these features make use of a combination of numeric and symbolic capabilities of Mathematica.

5.1 Feedforward Network Functions and Options

This subsection introduces the different  commands to initialize, train, and evaluate FF networks. Examples
using the commands can be found in Section 5.2, Examples.

5.1.1 InitializeFeedForwardNet

You initialize an FF network with InitializeFeedForwardNet.

InitializeFeedForwardNet@x, y, nh, optsD
initializes an FF network based on the
input data x and the output data y with the
number of hidden neurons given by the list nh

Initializing an FF network.

The returned network is an object with head FeedForwardNet,  following the general format described in
Section  3.2.3,  Network  Format.  FeedForwardNet  and  RBFNet  have  one  more  replacement  rule  than  the
other network models. Its name is NumberOfInputs and it indicates how many inputs the network takes.

The number  of  inputs  and outputs  of  the  network do not  need to  be specified explicitly.  They are instead
extracted from the number of columns in the input and output data.
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The argument nh should be a list of integers. The length of the list indicates the number of hidden layers in
the  network,  and  the  integers  indicate  the  number  of  neurons  in  each  hidden  layer.  A  linear  model  is
obtained by setting it to an empty list, nh={}.

InitializeFeedForwardNet takes the following options.

option default value

LinearPart False indicates if a linear model should
be placed in parallel to the network

Neuron Sigmoid activation function in the neurons

BiasParameters True indicates if bias parameters should be included

RandomInitialization False indicates if the parameters
should be randomly initialized;
the default is to use a smart initialization

Regularization None indicates regularization in the
least-squares fit of the linear parameters

FixedParameters None indicates if some parameters
should be fixed and, therefore,
excluded from the training

InitialRange 1 range of the uniform probability function
if the parameters are initialized randomly

OutputNonlinearity None indicates if the output neuron should
be nonlinear; for classification problems,
OutputNonlinearityØ
Sigmoid is recommended

Compiled True use compiled version

Options of InitializeFeedForwardNet.

These are almost the same options for InitializationRBFNet, which is used to initialize RBF networks.
The difference is the option BiasParameters  with which you can obtain an FF network without the bias
parameters  indicated  by  b  in  Equation  2.7  in  Section  2.5.1,  Feedforward  Neural  Networks.  Normally,  you
should include these parameters.
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Another difference compared to InitializationRBFNet is that some of the default values of the options
are different.

The parameters of the network can be initialized in three different ways, depending on the option Randomg
Initialization:

   è  False, which is the default. Then the parameters are initialized so that the slopes of neurons are 
placed within the domain of the input data. The exact initialization is still random, but the input 
data is used to choose a good range from which the parameters are chosen randomly. If there is no 
neuron in the output layer, then the linear parameters of the network are fitted to the output data 
using the least-squares algorithm. For most problems this gives a good initialization. If the model is 
overparameterized, that is, if it has more parameters than necessary, the least-squares step may give 
very large parameter values, which can give problems in the training. In such cases LinearParameg
ters is an alternative to False.

   è  True, by which the parameters are initialized randomly from a uniform distribution. The range of 
the distribution can be set using the option InitialRange.

   è  LinearParameters, by which the positions of the neurons are initialized in the same way as if 
False is used. The linear parameters are randomly chosen. This can be a good alternative if the 
model is overparameterized and if you intend to use regularization or stopped search in the 
training.

The  options  Regularization  and  FixedParameters  can  be  set  at  the  initialization of  the  network  or
when  the  network  is  trained  with  NeuralFit.  In  Section  7.5,  Regularization  and  Stopped  Search,  and
Section 13.2, Fixed Parameters, you can learn how to use these options.

The  default  neuron  function  is  Sigmoid,  but  you  can  use  the  option  Neuron  to  change  it  to  any  other
differentiable function. How this is done is shown in Section 13.3, Select Your Own Neuron Function.

Depending on the  initial parameter  values of  the FF network, it  will  converge  to  different  local  minima in
the training. Therefore, it is best to repeat the training a couple of times with the same neural network type
but with different initializations. You get a new parameter initialization by repeating the command Initialg
izeFeedForwardNet.  Also,  it  should  be  noted  that  if  you  use  the  default  option  RandomInitializag
tion→False, you get a partly random initialization.
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5.1.2 NeuralFit

The initialized FF network is trained with NeuralFit. This command, which is also used for RBF networks
and for  dynamic networks,  is  described  here  with all  its  variants.  Section 2.5.3,  Training Feedforward and
Radial Basis Function Networks, describes the algorithms in some detail.

NeuralFit@net, x, yD trains the model net using input data x and output
data y with a default number of training iterations H30L

NeuralFit@net, x, y, xv, yvD
trains the model net using input data x and
output data y with validation data xv, yv submitted

NeuralFit@net, x, y, iterationsD
normal training but with the
number of training iterations indicated

NeuralFit@net, x, y, xv, yv, iterationsD
normal training but with the number of training
iterations indicated and with submitted validation data

Training an FF network.

NeuralFit returns a list of two variables. The first one is the trained FF network, and the second is a record
containing information about the training.

An existing network can be submitted for  more training by setting net  equal  to the network or its  training
record.  The advantage of submitting the training record is that the information about the earlier training is
combined with the additional training.

During  the  training,  intermediate  results  are  displayed  in  an  automatically  created  notebook.  After  each
training iteration the following information is displayed:

   è  Training iteration number

   è  The value of the RMSE

   è  For validation data submitted in the call, the RMSE value for this second data set is also displayed

   è  The step length control parameter of the minimization algorithm (l or m), which is described in 
Section 2.5.3, Training Feedforward and Radial Basis Function Networks
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At the end of the training, a plot is displayed with RMSE as a function of iteration. 

Using the options of NeuralFit, as described in Section 7.7, Options Controlling Training Results Presenta-
tion, you can change the way the training results are presented.

At the end of the training you often receive different warning messages. These give you information on how
the  training performed.  By  looking at  the  performance  plot,  you can usually tell  whether  more training is
required. If the plot has not flattened out toward the end of the training, then you should consider applying
more training iterations. This can be done by resubmitting the trained network to NeuralFit  so  that you
do not have to initiate training anew.

There  are  many  options  to  NeuralFit  that  can  be  used  to  modify  its  behavior.  They  are  described  in
Section 7.1, NeuralFit.

A  derived  FF  network  can  be  applied  to  new  inputs  using  function  evaluation.  The  result  given  by  the
network is its estimate of the output.

net@xD evaluates net on the input vector x

Function evaluation of a feedforward network.

The input argument x can be a vector containing one input sample, or a matrix containing one input sample
on each row.

The function evaluation has one option.

option default value

Compiled True indicates that a compiled version
of the evaluation rule should be used

Option of the network evaluation rule.

5.1.3 NetInformation

Information about an FF network is presented in a string by the function NetInformation.
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NetInformation@fdfrwrdD gives information about an FF network

The NetInformation function.

5.1.4 NetPlot

The  command NetPlot  can  be  used  to  illustrate the  derived FF  network or  the  evolution of  the training.
Depending on how the option DataFormat is set, the command can be used in very different ways. 

NetPlot@fdfrwrd,x,yD evaluates the network on the supplied data

NetPlot@fitrecord,x,yD evaluates the training of a net using supplied data

Illustrate models and training of models.

If the input dimension is one or two, the default is to plot the estimated function in the range of the supplied
data. In the one-dimensional case, the data is also shown.

When NetPlot is applied to an FF network, it takes the following options.

option default value

OutputNonlinearity Automatic this option only takes effect when DataFormatØ
BarChart; it can be used to change
the nonlinearity in the output layer;
for classification problems
OutputNonlinearityØ
UnitStep is recommended

DataFormat Automatic if a model is submitted,
gives the values of the hidden neurons
when the model is evaluated on the data;
if a training record is submitted,
gives a plot of the parameters of
the network versus training iterations

Intervals 5 intervals between plots
if a training record is submitted

Compiled True use compiled version
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Options of NetPlot.

In  addition  to  these,  you  can  submit  options  to  modify  the  graphical  output.  Depending  on  the  chosen
option for DataFormat,  the graphic is created by BarChart,  BarChart3D,  MultipleListPlot,  Listg
Plot, Plot3D, or Histogram.

If  the  input  dimension  is  higher  than  two,  then  the  default  is  to  plot  the  numerical  values  of  the  hidden
neurons  versus  the  data.  This  can  be  obtained  also  in  one-  and  two-dimensional  problems  by  choosing
DataFormat→HiddenNeurons. Notice, however, that plotting the neurons versus data only makes sense if
the input signal vectors are placed in some kind of order.

 The option DataFormat takes any of the following values:

   è  FunctionPlot: plots the mapping using the range of the supplied data. It can only be used if the 
model has one or two inputs.

   è  NetOutput: plots the network output versus the given output. A perfect fit corresponds to a 
straight line with slope 1 through the origin.

   è  ErrorDistribution: gives a histogram of the errors when the model is applied to submitted data. 
You can modify the presentation of the result using any of the options applicable to Histogram.

   è  HiddenNeurons: gives the values of the hidden neurons when the model is evaluated on the data. 
This function makes most sense when it is applied to dynamic models.

   è  ParameterValues: plots the parameters versus the training iterations. This is only possible for the 
training record.

   è  LinearParameters: plots the parameters of the linearization versus data. This function makes 
most sense when it is applied to dynamic models.

The following three possibilities are primarily intended for classification models:

   è  Classifier: shows the borders between different classes. It can only be used with two-input 
models.

   è  BarChart: illustrates the classification result with bar charts.

   è  ClassPerformance: plots the improvement of the classification for each class versus the number 
of training iterations. Correctly classified samples are marked with diamonds and solid lines, while 
incorrectly classified samples are indicated with stars and dashed lines. This is only possible for the 
training record. 
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If  you  submit  a  training  record  instead  of  an  FF  network,  then  depending  on  which  option  is  given,  you
obtain a graphic array of the corresponding results as a function of the number of training iterations. For a
large number of iterations, it  is  advisable to set the option Intervals  to a larger integer,  thus controlling
the size of the length of the graphic array.

Examples  where  NetPlot  is  used  to  evaluate  FF  networks  are  given  in  Section  5.3,  Classification  with
Feedforward Networks and Section 5.2, Examples.

5.1.5 LinearizeNet and NeuronDelete

The commands LinearizeNet and NeuronDelete modify the structure of an existing network.

In  many  situations,  it  is  interesting  to  linearize  a  nonlinear  function  at  some  point.  FF  networks  can  be
linearized using LinearizeNet.

LinearizeNet@fdfrwrd, xD linearizes the FF network at x

Linearizing a feedforward network.

LinearizeNet  returns  a  linear  model  in  the  form  of  an  FF  network  without  any  hidden  neurons  as
described in Section 2.5.1, Feedforward Neural Networks.

The point of the linearization, x, should be a list of real numbers of length equal to the number of inputs of
the neural network.

The linear network corresponds to a first-order Taylor expansion of the original network in the linearization
point.

Sometimes  it  might  be  of  interest  to  remove  parts  of  an existing  network.  NeuronDelete  can  be  used  to
remove outputs, inputs, hidden neurons, or a linear submodel. 

You can also  remove  individual  parameters  by  setting  their  numerical  values  to  zero  and excluding  them
from the training, as described in Section 13.2, Fixed Parameters.

Chapter 5: The Feedforward Neural Network 87



NeuronDelete@net, posD deletes the neurons indicated
with pos in an existing network net

NeuronDelete@net, pos, xD deletes the neurons indicated with pos in an
existing network net where input data is supplied
and the remaining network parameters are adjusted

Deleting neurons from an existing network.

The argument pos indicates which part of the network should be deleted in the following way:80, 0<: removes the linear submodel.80, m<: removes input m.8n, m<: removes neuron m in hidden layer n.8n, m<: removes output m if n == number of hidden layers + 1.

The argument pos can also be a list where each element follows these rules.

NeuronDelete  can  be  used  to  obtain  the  values  of  the  hidden  neurons  of  a  network;  if  all  outputs  are
removed, then a network is returned with outputs equal to the last hidden layer of the initial network. The
output nonlinearity is set to the neuron function used in the initial network. 

If  input  data is  submitted,  then the  parameters of  the layer following the removed neuron are  adjusted so
that the new network approximates the original one as well as possible. The least-squares algorithm is used
for this.

There is no adjustment of the parameters if an output is removed.

If a neuron in the last hidden layer is removed, then the parameters in the linear submodel are also included
in  the  parameter  adjustment.  If  the  linear  submodel  is  removed,  then  the  parameters  in  the  last  layer  are
adjusted.

5.1.6 SetNeuralD, NeuralD, and NNModelInfo

The commands SetNeuralD,  NeuralD,  and NNModelInfo  are  intended primarily for  internal use  in  the
package, but they might be useful if you want to perform more special operations.
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SetNeuralD and NeuralD help you to compute the derivative of an FF or RBF network and they might be
useful  if  you  write  your  own  training  algorithm.  SetNeuralD  does  not  return  any  object  but  produces
optimal code  for  the  specific  network structure,  which then is  used by NeuralD.  Therefore,  each time the
network structure is changed, SetNeuralD has to be called prior to NeuralD.

SetNeuralD@net, optsD sets NeuralD to a function to compute
the derivative of net with respect to its parameters

Generating optimal code for NeuralD, which is used to compute the derivative of a network.

option default

Compiled True indicates if NeuralD should be compiled

FixedParameters None points out parameters to be excluded
in the same way as for NeuralFit

Options of SetNeuralD.

The numerical derivative of a network is obtained using NeuralD.

NeuralD@net, xD computes the derivative of net at the input vectors x

Computation of the derivative of a network. 

NeuralD can be applied to a matrix with one numerical input vector on each row. The output is a three-di-
mensional list:  the first  level  indicates the data,  the second level  has one component for each network out-
put, and the third level has one component for each parameter.

Notice  that  you only have to  call  SetNeuralD  once  for  a specific  network. The current  parameter values,
submitted in the argument net, are used each time NeuralD is called. 

You may use SetNeuralD and NeuralD in any of your own training algorithms in the following way. First
the network structure is  determined.  Then SetNeuralD  is  called to obtain the optimized code. The actual
training often consists of a loop containing the computation of the derivative and a parameter update.  You
use NeuralD  to obtain the derivative at the parameter values given in the network in the call.  Section 7.9,
Writing Your Own Training Algorithms, illustrates the use of SetNeuralD and NeuralD.
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To save computer time, and since NeuralD is intended to be used inside a loop, there is no security check of
the input arguments. Therefore, you have to include these yourself, preferably outside the loop.

NNModelInfo  gives  you  exactly  the  specification  needed  to  create  a  new  neural  network  with  the  same
structure. This specifies the network with the exception of the parameter values.

NNModelInfo@fdfrwrdD extracts the specification of the FF network

Structure specification about an FF network.

NNModelInfo  returns  a  list  of  four  variables  that  contains  the  following:  number  of  inputs,  number  of
outputs, number of hidden neurons, and a list of options used when the model was defined. 

5.2 Examples

This  section  contains some simple examples  that  illustrate  the  use  of  FF  networks.  Since  many commands
and  options  are  identical  for  FF  and  RBF  networks,  more  advanced  examples  that  illustrate  common fea-
tures  are  found  in  Chapter  7,  Training  Feedforward  and  Radial  Basis  Function  Networks;  Chapter  8,
Dynamic Neural Networks; and Chapter 12, Application Examples.

5.2.1 Function Approximation in One Dimension

Consider a function with one input and one output. First, output data is generated by evaluating the given
function for a given set of input data. Then, the FF network will be trained with the input-output data set to
approximate  the  given  function.  You  can  run  the  example  on  different  data  sets  by  modifying  the  com-
mands generating the data.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

This  example  will  involve  an input-output  one-dimensional data set  of  a  sinusoidal function.  The variable
Ndata  indicates the number of training data generated. Change the following data generating commands if
you want to rerun the example on other data. It is always a good idea to look at the data. This is especially
easy for one-dimensional problems.
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Generate and look at the data.

In[3]:= Ndata = 20;
x = Table@10 N@8iêNdata<D, 8i, 0, Ndata − 1<D;
y = Sin@xD;
ListPlot@AppendRows@x, yDD
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The training data consist of the input data x and the output y.

Consider first a randomly initialized FF network, with four hidden neurons in one hidden layer. Although
random initialization is not generally recommended, it is used here only for purposes of illustration.

Initialize an FF network with four neurons.

In[7]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<, RandomInitialization→ TrueD
Out[7]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 25, 46<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Find some information about the network.

In[8]:= NetInformation@fdfrwrdD
Out[8]= FeedForward network created 2002−4−3 at 13:25.

The network has 1 input and 1 output. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

Chapter 5: The Feedforward Neural Network 91



The randomly initialized network is  a description of  a  function, and you can look at it  before  it  is  trained.
This can be done using NetPlot. 

Look at the initialized FF network.

In[9]:= NetPlot@fdfrwrd, x, yD
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Fit the network to the data.

In[10]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 3D;
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Often, a warning appears stating that training was not completed for the iterations specified. This is equiva-
lent  to  saying that  the  parametric  weights did  not  converge  to  a  point  minimizing the  performance  index,
RMSE.  This  is  not  an  uncommon  occurrence,  especially  for  network  models  involving  a  large  number  of
parameters.  In  such  situations,  by  looking  at  the  performance  plot  you  can  decide  whether  additional
training would improve performance.
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The trained FF network can now be used in any way you would like. For example, you can apply it to new
input data.

Evaluate the FF model at a new input value.

In[11]:= fdfrwrd2@81.5<D
Out[11]= 81.21137<

Evaluate the FF model at several new input values.

In[12]:= fdfrwrd2@881.5<, 80.3<, 82.5<<D
Out[12]= 881.21137<, 80.0976301<, 80.478028<<
You can also obtain a Mathematica expression of the FF network by applying the network to a list of symbols.
The list should have one component for each input of the network.

Obtain an expression for the FF network in the symbol xx.

In[13]:= Clear@xxD
fdfrwrd2@8xx<D

Out[14]= 9−412.23 +
162.243

cccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ0.693347−0.954841 xx

+

250.898
cccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ0.722195−0.737868 xx

+
82.5833

cccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ0.80038+0.780475 xx +

356.662
cccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ−0.860144+0.831306 xx =

You can plot the function of the FF network on any interval of your choice.
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Plot the FF network on the interval 8-2, 4<.
In[15]:= Plot@fdfrwrd2@8x<D, 8x, −2, 4<D
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If  you use NetPlot  then you automatically get  the  plot in  the  range of  your training data.  The command
relies on the Mathematica command Plot, and any supported option may be used.

Plot the estimated function and pass on some options to Plot.

In[16]:= NetPlot@fdfrwrd2, x, y, PlotPoints → 5, PlotDivision → 20D
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By giving the option DataFormat→NetOutput  you obtain a plot of the model output as a function of the
given output. If the network fits the data exactly, then this plot shows a straight line with unit slope through
the  origin.  In  real  applications you  always  have  noise  on  your  measurement,  and you  can only  expect  an
approximate straight line if the model is good.

94 Neural Networks



Plot the model output versus the data output.

In[17]:= NetPlot@fdfrwrd2, x, y, DataFormat → NetOutputD
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By giving the option DataFormat→HiddenNeurons in the call to NetPlot, you obtain a plot of the values
of  the  hidden  neurons  versus  the  data.  Such  a  plot  may  indicate  if  the  applied  network  is  unnecessarily
large. If some hidden neurons have very similar responses, then it is likely that the network may be reduced
to a smaller one with fewer neurons.

Look at the values of the hidden neurons and specify colors.

In[18]:= NetPlot@fdfrwrd2, x, y, DataFormat → HiddenNeurons,
PlotStyle → 8Hue@.0D, Hue@.2D, Hue@.4D, Hue@.6D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@fdfrwrd2@@1, 1, 1, 1DDDDDD
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If  some hidden neurons  give  similar  outputs,  or  if  there  is  a  linear  relation between  them,  then you may
remove  some  of  them,  keeping  the  approximation  quality  at  the  same  level.  The  number  of  any  such
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neurons  can  be  identified  using  the  legend.  This  might  be  of  interest  in  a  bias-variance  perspective  as
described in Section 7.5, Regularization and Stopped Search.

Remove the second hidden neuron, and look at the neurons and the approximation of the function.

In[19]:= fdfrwrd3 = NeuronDelete@fdfrwrd2, 81, 2<, xD;
In[20]:= NetPlot@fdfrwrd3, x, y, DataFormat → HiddenNeurons,

PlotStyle → 8Hue@.2D, Hue@.4D, Hue@.6D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@fdfrwrd3@@1, 1, 1, 1DDDDDD
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In[21]:= NetPlot@fdfrwrd3, x, yD
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Note that if you re-evaluate the example, then you may have to delete a different neuron due to the random-
ness in the initialization.

By removing the output of the network you obtain a new network with outputs equal to the hidden neurons
of the original network. 
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In[22]:= NeuronDelete@fdfrwrd2, 82, 1<D
NeuronDelete::NewOutputLayer :  

All outputs have been deleted. The second−to−last layer becomes the new output.

Out[22]= FeedForwardNet@88w1<<, 8AccumulatedIterations → 3,
CreationDate → 82002, 4, 3, 13, 25, 46<, Neuron → Sigmoid,
FixedParameters → None, OutputNonlinearity → Sigmoid, NumberOfInputs → 1<D

You can use  NetPlot  to  evaluate  the  training  of  the  network.  This  is  done  by  applying it  to  the  training
record, which was the second argument of NeuralFit. Depending on the option DataFormat, the result is
presented differently.

Look at how the parameter values change during the training.

In[23]:= NetPlot@fitrecord, x, y, PlotStyle → 8Hue@.0D, Hue@.2D, Hue@.4D, Hue@.6D<D
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Parameter values versus iterations

Often the parameter values increase during the training. From such a plot you may get some insights about
why the parameter values did not converge in the training, although the derived network performs well.
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Look at the function approximation after each training iteration.

In[24]:= NetPlot@fitrecord, x, y, Intervals → 1, DataFormat → FunctionPlotD
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If  you  prefer  an  animation  of  the  training  progress,  you  can  load  <<Graphics`Animation`  and  then
change  the  command  to  Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1,  Datag
Format→FunctionPlot,DisplayFunction→Identity]].

5.2.2 Function Approximation from One to Two Dimensions

In this example a function with one input and two outputs will be considered. The only difference from the
previous example is that there are two outputs instead of one.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

Load the data.

In[3]:= << one2twodimfunc.dat;

The input is placed in x and the output in y.

Check the dimensions of the data.

In[4]:= Dimensions@xD
Dimensions@yD

Out[4]= 820, 1<
Out[5]= 820, 2<
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There are 20 data samples, one input, and two outputs.

Look at the data; some transformation is necessary.

In[6]:= << Graphics`MultipleListPlot ;̀
temp = Map@AppendRows@x, Transpose@8#<DD &, Transpose@yDD;
Apply@MultipleListPlot, Flatten@8temp, PlotJoined → True<, 1DD
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The plot shows the two outputs versus the input.

The origin of this data is artificial; however, you can imagine a problem setting like in Section 3.4.2, Function
Approximation  Example,  with  the  change  that  two  variables  (the  outputs)  depend  on  the  variable  x  (the
input).

Initialize and train an FF network with two outputs to approximate the two-dimensional output. The num-
ber of inputs and outputs does not need to be specified, since this information is extracted from the dimen-
sions of the supplied data matrices.

Initialize an FF network with four neurons.

In[9]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<D
Out[9]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 27, 25<,
OutputNonlinearity → None, NumberOfInputs → 1<D
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Find some information about the network.

In[10]:= NetInformation@fdfrwrdD
Out[10]= FeedForward network created 2002−4−3 at 13:27. The

network has 1 input and 2 outputs. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

So  far,  the  network  has  only  been  initialized.  It  can  be  interesting  to  look  at  the  initialization  before  the
training.

Look at the initialized FF network.

In[11]:= NetPlot@fdfrwrd, x, yD
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Notice  that  already  the  initialization is  quite  good,  something  not  too  unusual  for  a  default  initialization.
You can repeat the initialization setting RandomInitialization→True to see the difference.

Now train the initialized FF network.

Fit the network to the data.

In[12]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 20D;
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The  FF  network  with  two outputs  can  be  evaluated  on data  in  the  same way as  a  network  with  only  one
output. The difference is that you obtain two output values now.

Evaluate the FF network on one input data sample.

In[13]:= fdfrwrd2@82.<D
Out[13]= 80.920756, −0.369678<

Look at the result with the fitted FF network.

In[14]:= NetPlot@fdfrwrd2, x, yD
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5.2.3 Function Approximation in Two Dimensions

An FF network can have any number of inputs and outputs. In the previous two examples there was only
one input. Here is an example with two inputs. 

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data and look at the function.

In[2]:= Ndata = 10;
x = Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y = Map@Sin@10. #@@1DD #@@2DDD &, x, 82<D;
ListPlot3D@y, MeshRange → 880, 0.9<, 80, 0.9<<D;
x = Flatten@x, 1D;
y = Transpose@8Flatten@yD<D;
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The training data is placed in x and y, where x is the input data and y is the output data.

You can modify the example by changing the function generating the data and by changing the number of
neuron  basis  functions  in  the  following  initialization.  Notice  that  you  will  obtain  slightly  different  results
even if you repeat the example without any changes at all. This is due to the randomness in the initialization
algorithm of the FF network.

Check the dimensions of the data.

In[8]:= Dimensions@xD
Dimensions@yD

Out[8]= 8100, 2<
Out[9]= 8100, 1<
There are 100 input-output data pairs with two-dimensional inputs and one-dimensional outputs.

Initialize an FF network with four neurons.

In[10]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<D
Out[10]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 27, 54<,
OutputNonlinearity → None, NumberOfInputs → 2<D
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You can apply  the  initialized network  to  the  input  data  and plot  the  network  output.  Compare  the  result
with the true function in the previous plot.

Look at the initialized FF network.

In[11]:= y2 = fdfrwrd@xD;
ListPlot3D@Partition@Flatten@y2D, NdataD, MeshRange → 880, 0.9<, 80, 0.9<<D
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So far the network has only been initialized. Now it is time to train it.

Fit the FF network to the data.

In[13]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 20D;
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You can look at the result by evaluating the trained network at the input data points as follows.
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Look at the result with the fitted FF network.

In[14]:= y2 = fdfrwrd2@xD;
ListPlot3D@Partition@Flatten@y2D, NdataD, MeshRange → 880, 0.9<, 80, 0.9<<D
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Notice  that  there  are  usually  several  local  minima.  If  you  repeat  the  initialization  and  the  training,  you
obtain different results. 

The plot  does  not,  however,  show how the function  looks in  between the  data points.  By using NetPlot,
which  gives  a  plot  based  on  the  Mathematica  command,  Plot3D,  you  obtain  a  plot  with  any  number  of
evaluation points.  If  you  apply  NetPlot  to  the  training  record,  you  obtain  a  graphics  array  showing the
evolution of the function approximation during the training.

In[16]:= NetPlot@fitrecord, x, y, DataFormat → FunctionPlotD
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If  you  prefer  an  animation  of  the  training  progress,  you  can  load  <<Graphics`Animation`  and  then
change  the  command  to  Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1,  Datag
Format→FunctionPlot,DisplayFunction→Identity]].

You can obtain a histogram of the errors between the network output and the true output with NetPlot by
choosing  DataFormat→ErrorDistribution.  This  might  help  you  to  find  outliers  in  the  data  and  to
explain if something goes wrong.

In[17]:= NetPlot@fdfrwrd2, x, y, DataFormat → ErrorDistributionD
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Each bar shows the number of samples given an estimation error within the borders of the bars.

Of course, you can also obtain the previous plot by using the command Histogram in the following way.

In[18]:= Histogram@Flatten@y − fdfrwrd2@xDDD
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5.3 Classification with Feedforward Networks

In this section a small example is given that shows how FF networks can be used for classification. 

Read the Neural Networks package.

In[1]:= << NeuralNetworks`

Load the data consisting of three classes divided into two clusters each. The data distribution is contained in
x  (input  data),  and  the  class  indication  is  in  y  (output  data).  The  data  format  is  described  in  Section  3.2,
Package Conventions.

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

Look at the data.

In[3]:= NetClassificationPlot@x, yD
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In classification problems it is important to have a differentiable nonlinearity at the output of the FF network
model.  The  purpose  of  the  nonlinearity  is  to  ensure  that  the  output  values  stay  within  the  range  of  the
different  classes.  That is  done using the option OutputNonlinearity.  Its  default is  None.  Set  it  to Sigg
moid so that its saturating values are 0 and 1, exactly as the output data of the classes. Note that the sigmoid
never reaches exactly 0 and 1; this is in most problems of no practical importance.
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Initialize an FF network.

In[4]:= fdfrwrd = InitializeFeedForwardNet@x, y, 86<, OutputNonlinearity→ SigmoidD
Out[4]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 28, 54<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 2<D

Train the initialized FF network.

In[5]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 8D;
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The trained classifier can now be used on the input data vectors. 

Classify two data vectors.

In[6]:= fdfrwrd2@880, 0.1<, 82, 1<<D
Out[6]= 880.975454, 0.0430855, 0.0193727<, 80.958409, 0.0196418, 0.0360199<<
The data vectors are assigned to the class with the largest output value. If several outputs give large values,
or if none of them do, then the classifier is considered to be highly unreliable for the data used.

The performance of the derived classifier can be illustrated in different ways using NetPlot. By the choice
of the option DataFormat, you can indicate the type of plot you want. If the data vectors are of dimension
two, as in this example, nice plots of the classification boundaries can be obtained.
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Plot classification borders together with the data.

In[7]:= NetPlot@fdfrwrd2, x, y, DataFormat → Classifier,
ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D
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The previous plot showed the classification boundary for each class. It is also possible to look at the classifica-
tion  function  as  a  function  plot.  Since  there  are  three  outputs  of  the  network,  you obtain  three  plots.  The
boundaries indicated  in  the  previous  plot  are  the  level  curves  where  the  function output  equals 0.5  in  the
function plot shown here.
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Look at the function.

In[8]:= NetPlot@fdfrwrd2, x, y, DataFormat → FunctionPlot,
Ticks → 880, 1, 2<, 80, 1, 2<, 80, 0.5, 1<<D
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This option can be used for problems with one or two input signals. 

By  giving  the  option  BarChart,  you  obtain  bar  charts  showing  the  classification  performance.  Correctly
classified  data  is  found  on  the  diagonal  and  the  misclassified  data  corresponds  to  the  off-diagonal  bars.
Notice  that,  since  the  outputs  of  the  FF  network  take  values  in  the  range  80, 1<,  you do  not  obtain precise
classifications but, rather, a “degree” of membership. This situation may be corrected by using a UnitStep
output neuron with the option setting OutputNonlinearity→UnitStep.  Then the outputs will be either
0 or 1, as desired. 

In[9]:= NetPlot@fdfrwrd2, x, y, DataFormat → BarChart, OutputNonlinearity→ UnitStepD
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On the x  and y  axes,  you have the  class of  the  samples according to  the  output  data and according to  the
network classifier.  On the  z  axis  is  the  number  of  samples.  For  example,  in  the  bin H2, 3L  is  the  number  of
data samples from the second class, according to the supplied output data, but classified into the third class
by the network. Therefore, the diagonal bins correspond to correctly classified samples, that is, the network
assigns these samples to the same class as indicated in the output data.

In contrast to FunctionPlot and Classifier, the BarChart option can be used to visualize the perfor-
mance of classifiers of any input dimensions.

So  far  you  have  evaluated  the  end  result  of  the  training—the  derived  FF  network.  It  is  also  possible  to
display the same plots but as a function of the training iterations. Consider the training record.

In[10]:= fitrecord

Out[10]= NeuralFitRecord@FeedForwardNet,
ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

The first component is just a copy of the FF network model. The second component contains several informa-
tion items  about the  training.  Section  7.8,  The Training Record,  shows you how to  extract  the  information
from  the  training  record.  Here,  you  will  see  how  this  information  can  be  illustrated  in  different  ways  by
using NetPlot and by choosing a different DataFormat option.

Look  at  the  classification  performance  for  each  class  during  training.  Correctly  classified  samples  are
marked with diamonds and a solid line, incorrectly assigned samples are indicated with stars and a dashed
line.
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In[11]:= NetPlot@fitrecord, x, y,
DataFormat → ClassPerformance, OutputNonlinearity → UnitStepD
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The  training  progress  of  the  classifier  may  be  viewed  as  a  function  of  iteration  using  the  option  setting
DataFormat→Classifier.  By  default,  the  display  shows  the  evolving  boundaries  at  every  (5  ×  report
frequency)  iterations,  where  the  report  frequency  is  determined  by  the  option  ReportFrequency  of
NeuralFit.  The  display  frequency  may  be  changed  from  5  to  any  other  positive  integer  by  explicitly
setting Intervals to a desired value, such as 4 in the present example.
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Plot the classifier at every four training iterations.

In[12]:= NetPlot@fitrecord, x, y, DataFormat → Classifier,
Intervals → 4, ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D
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If  you prefer,  the  progress  can  be  animated as  described  in  Section  5.2.1,  Function Approximation in  One
Dimension, instead of being given in a graphics array.

Also the BarChart option can be used to evaluate the progress of the training. Changing the nonlinearity at
the output from the smooth sigmoid to a discrete step makes the output take only the values 0 and 1.

Illustrate the classification result every four iterations of the training.

In[13]:= NetPlot@fitrecord, x, y, DataFormat → BarChart,
OutputNonlinearity → UnitStep, Intervals → 4D
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Iteration: 8
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As  seen  in  the  plots,  in  the  beginning  of  the  training  the  network  model  classifies  a  lot  of  samples  incor-
rectly.  These  incorrectly  classified  samples  are  illustrated  with  the  non-diagonal bins.  As  the  training pro-
ceeds,  more  of  the  samples  are  classified  correctly;  at  the  end  you can see  all  of  the  samples  are  correctly
classified because all samples are at the diagonal.

This result can easily be animated as described in Section 5.2.1, Function Approximation in One Dimension.
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5.4 Further Reading

FF neural networks are covered in the following textbooks, among others:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Redwood City, CA, Addi-
son-Wesley, 1991.
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6 The Radial Basis Function Network

Compared to the FF network, the RBF network is the next-most-used network model. As the name implies,
this  network  makes  use  of  radial  functions.  Section  2.5.2,  Radial  Basis  Function  Networks,  gives  a  tutorial
introduction to this network model.

FF and RBF networks can be used for the same types of problems, and the commands and their options are
very similar. Therefore,  instead of repeating a lot of information, the presentation here will be brief,  giving
references to the corresponding place in the section on FF networks where possible. 

Using the symbolic computing capability of Mathematica,  the structure of the RBF network may be modified
much more naturally than is possible in other neural network software tools. Some of the features are listed
in Chapter 5, The Feedforward Neural Network.

6.1 RBF Network Functions and Options

This section  introduces  the  commands to  initialize,  train,  and use  RBF networks.  Since most  of  these  com-
mands  are  the  same  as  those  used  for  FF  models,  references  will  be  given  to  the  chapter  on  FF  networks
instead of repeating the material here. Examples using the commands can be found in Section 6.2, Examples.

6.1.1 InitializeRBFNet

RBF networks are initialized with InitializeRBFNet.

InitializeRBFNet@x, y, nb, optsD
initializes an RBF network based on
the input data x and the output data y with
the number of neurons given by the integer nb

Initializing an RBF network.

The  returned  network  is  an  object  with  head  RBFNet,  following  the  general  format  described  in  Section
3.2.3,  Network  Format.  FeedForwardNet  and  RBFNet  have  one  replacement  rule  more  then  the  other
network models. Its name is NumberOfInputs, and it indicates how many inputs the network takes.



The number  of  inputs  and outputs  in  the  network  are extracted  from the number  of  columns in the  input
and output data, so only the number of neurons needs to be specified.

InitializeRBFNet  takes  almost  the  same  options  as  InitializationFeedforwardNet.  However,
some of the default values for the options are different, as indicated in the table that follows.

option default value

LinearPart True indicates whether a linear model
should be placed in parallel to the net

Neuron Exp neuron activation function

RandomInitialization False indicates whether the parameters
should be randomly initialized;
the default is to use a smart initialization

Regularization None indicates regularization in the
least-squares fit of the linear parameters

FixedParameters None indicates whether some
parameters should be fixed and,
therefore, excluded from the training

InitialRange 1 indicates the range of the
uniform probability function if the
parameters are initialized randomly

OutputNonlinearity None indicates whether the output neuron
should be nonlinear; for classification
problems OutputNonlinearityØ
Sigmoid is recommended

Compiled True uses the compiled version

Options of InitializeRBFNet.

The parameters of the network can be initialized in three different ways depending on the option Randomg
Initialization: False,  which is the default; True; and LinearParameters. The default initialization
is usually the best. It gives a random distribution of the basis centers over the input data range. This makes
sense since only basis functions that cover the data range can be used in the function approximation. Also
the widths of the basis functions are scaled using the input data range. The linear parameters are fitted with
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the least-squares algorithm to the output data. The meanings of the options are the same as for FF networks,
and  they  are  further  described  in  Section  5.1.1,  InitializeFeedForwardNet.  You  can  also  define  your  own
initialization algorithm and insert the parameters in an RBFNet  object as described in Section 13.1, Change
the Parameter Values of an Existing Network.

The  options  Regularization  and  FixedParameters  can  be  set  at  the  initialization of  the  network  or
when the network is trained with NeuralFit. You can learn how to use these options in Section 7.5, Regular-
ization and Stopped Search, and Section 13.2, Fixed Parameters.

The  default  value  of  the  option  Neuron  is  Exp.  You  then  obtain  an  RBF  network  with  the  Gaussian  bell
function  as  the  basis  function,  which  is  the  most  commonly  used  choice.  Section  13.3,  Select  Your  Own
Neuron Function, describes how you can use other basis functions.

6.1.2 NeuralFit

The initialized RBF network is trained with NeuralFit. This command is also used for FF networks and for
dynamic  networks.  An  introduction  to  using  it  is  given  in  Section  5.1.2,  NeuralFit.  Chapter  7,  Training
Feedforward and Radial Basis Function Networks, describes the command and its options in detail.

A  derived  RBF  network  can  be  applied  to  new  inputs  using  function  evaluation.  The  result  given  by  the
network is its estimate of the output.

net@xD evaluates net on the input vector x

Function evaluation of an RBF network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
on each row.

The function evaluation has one option.

option default value

Compiled True indicates that a compiled version
of the evaluation rule should be used

Option of the network evaluation rule.
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6.1.3 NetInformation

Information about an RBF network is presented in a string by the function NetInformation.

NetInformation@rbfD writes out information about an RBF network

The NetInformation function.

6.1.4 NetPlot

The command NetPlot can be used to evaluate the obtained RBF network and the training. It is used in the
same way as it was used for the FF networks described in Section 5.1.4, NetPlot.

6.1.5 LinearizeNet and NeuronDelete

The commands LinearizeNet and NeuronDelete modify the structure of an existing network.

You can linearize an RBF network at any input signal point using LinearizeNet. 

LinearizeNet@rbf, xD linearizes the RBF network at x

Linearize an RBF network.

LinearizeNet  returns  a  linear  model  in  the  form  of  an  FF  network  without  any  hidden  neurons  as
described in Section 2.5.1, Feedforward Neural Networks.

The point of the linearization x  should be a list of real numbers of length equal to the number of inputs of
the neural network.

Sometimes  it  may  be  of  interest  to  remove  parts  of  an  existing  network.  NeuronDelete  can  be  used  to
remove outputs, inputs, hidden neurons, or a linear submodel. 

You can also  remove  individual  parameters  by  setting  their  numerical  values  to  zero  and excluding  them
from the training, as described in Section 13.2, Fixed Parameters.
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NeuronDelete@net,posD deletes the neurons indicated
with pos in an existing network net

NeuronDelete@net,pos,xD deletes the neurons indicated with pos in an
existing network net with the input data supplied
and the remaining network parameters adjusted

Deleting the neurons from an existing network.

The argument pos indicates which part of the network should be deleted in the following ways:80, 0<: removes the linear submodel80, m<: removes input m81, m<: removes neuron m82, m<: removes output m

The argument pos can also be a list where each element follows these rules.

If input data is submitted, then the parameters of the output layer and the linear submodel are adjusted so
that the new network approximates the original one as well as possible. The least-squares algorithm is used
for this.

There is no adjustment of the parameters if an input or an output is removed.

6.1.6 SetNeuralD, NeuralD, and NNModelInfo

The  commands  SetNeuralD,  NeuralD,  and  NNModelInfo  are  primarily  for  internal  use  in  the  Neural
Networks package, but they may be useful if you want to perform more special operations. They are used in
the  same  way  for  RBF  as  for  FF  networks  and  an  explanation  can  be  found  in  Section  5.1.6,  SetNeuralD,
NeuralD, and NNModelInfo.
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6.2 Examples

This section gives some simple function approximation examples with one and two input variables and one
and two output variables. The examples are analogous to the examples given on FF networks in Section 5.2,
Examples. The reason for this similarity is that RBF networks and FF networks are used for the same type of
problems. The best choice between these two alternative models depends on the specific problem. You can
seldom tell which one is best without trying them both.

Notice that if you re-evaluate the examples, you will not receive exactly the same results. The reason for this
indeterminacy is that the initial network parameters are partly random. See Section 6.1.1, InitializeRBFNet. 

6.2.1 Function Approximation in One Dimension

The following example illustrates a one-dimensional approximation problem. You can change the example
by  modifying  the  function  that  generates  the  data  and  then  re-evaluating  the  entire  example.  The  result
depends not only on the data and the number of chosen neuron basis functions, but also on the initialization
of the parameters of  the RBF network. Since the initialization is partly random, you should expect  that the
answers will differ each time the network is trained.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`

In[2]:= << LinearAlgebra`MatrixManipulation`

It  is  always a  good idea to  look at the data.  In one-dimensional problems this is  especially easy.  Here you
can also modify the number of data samples and the function that generates the data. 
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Generate and look at data.

In[3]:= Ndata = 20;
x = Table@10 N@8iêNdata<D, 8i, 0, Ndata − 1<D;
y = Sin@0.1 x2D;
ListPlot@AppendRows@x, yDD

2 4 6 8

-1

-0.5

0.5

1

The training data consists of the input data x and the output y.

Initialize an RBF network with four neurons.

In[7]:= rbf = InitializeRBFNet@x, y, 4D
Out[7]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 36, 27<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Find some information about the network.

In[8]:= NetInformation@rbfD
Out[8]= Radial Basis Function network. Created 2002−4−3 at

13:36. The network has 1 input and 1 output. It consists of 4
basis functions of Exp type. The network has a linear submodel.

You can check the performance of the RBF network before the training. Often the initialization gives a fairly
good result.
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Look at the initialized RBF network on the data domain.

In[9]:= NetPlot@rbf, x, yD
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Fit the network to the data applying three iterations.

In[10]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 3D;
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Often a warning is given at the end of the training that indicates that the training was not complete. This is
quite common in connection with neural network models,  especially  when they involve a large number of
parameters.  Usually,  the  best  thing  to  do  is  to  look  at  the  decrease  in  the  performance  index  to  decide
whether  more  training  iterations  are  necessary.  In  this  example  where  only  three  iterations  were  applied,
you normally would apply more so that you see that the criterion flattened out.

The trained RBF network can now be used to process new input data.  The output is  the approximation of
the unknown true function at the point corresponding to the input.
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Evaluate the RBF model at a new input value.

In[11]:= rbf2@81.5<D
Out[11]= 80.222969<

Evaluate the RBF model at several new input values.

In[12]:= rbf2@881.5<, 80.3<, 82.5<<D
Out[12]= 880.222969<, 80.0298877<, 80.52558<<
By applying the network to a list of symbols you obtain a Mathematica expression describing the network.

In[13]:= rbf2@8a<D
Out[13]= 9−81.4446 − 14.1937 a + 940.804 Æ−0.0194935 H−7.77038+aL2 − 755.36 Æ−0.0242975 H−7.28812+aL2 +

9.54363 Æ−0.146868 H−4.84531+aL2 − 1.55335 Æ−0.0308604 H−3.54432+aL2=
You can then go on and manipulate this expression as you would any other Mathematica expression.

You can plot the function of the RBF network on any interval of your choice.

Plot the RBF network on the interval 8-2, 4<.
In[14]:= Plot@rbf2@8x<D, 8x, −2, 4<D
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Usually, a function estimate cannot be used outside the domain of the training data. In this case, this means
that the RBF network can only be used on the interval 80, 10<. Go back and check that this was the interval of
the training data.
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You  can  also  use  the  command  NetPlot  to  plot  the  function  approximation  together  with  the  data.  The
range of the plot is set to the range of the supplied input data.

Plot the estimated function.

In[15]:= NetPlot@rbf2, x, yD
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NetPlot can be used in many ways to illustrate the quality of the trained neural network. For example, by
giving  the  option  DataFormat→NetOutput,  you  obtain  a  plot  of  the  model  output  as  a  function  of  the
given output. If the network fits the data exactly, then this plot shows a straight line with unit slope through
the  origin.  In  real  applications you  always  have  noise  on  your  measurement,  and you  can only  expect  an
approximate straight line if the model is good.

Plot the model output versus the data output.

In[16]:= NetPlot@rbf2, x, y, DataFormat → NetOutputD
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It might be interesting to look at the position of the basis functions. If several of them are placed on the same
position or close to one another, this indicates that the number of neurons was higher than necessary, or that
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the initial parameters were unfavorable. In that case you can go back and initialize a new RBF network with
fewer neurons. By giving the option DataFormat→HiddenNeurons,  you display the output values of the
individual neurons versus the data.

Look at the basis functions.

In[17]:= NetPlot@rbf2, x, y, DataFormat → HiddenNeurons,
PlotStyle → 8Hue@.2D, Hue@.4D, Hue@.6D, Hue@.8D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@rbf2@@1, 1, 1, 1DDDDDD
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If  you see fewer  than four basis functions in the plot, then two or more of  the basis functions are identical
and  placed  on  top  of  each  other.  These  functions  can  be  identified  using  the  legend.  Remember  that  the
result  will  be  slightly  different  each  time  you  evaluate  the  example.  If  some  basis  functions  are  identical,
then one of them may actually be removed without compromising the approximation quality. Assume that
you want to delete the second basis function.

Remove the second neuron, plot the basis function, and plot the approximation of the new network.

In[18]:= rbf3 = NeuronDelete@rbf2, 81, 2<, xD
Out[18]= RBFNet@88w1, λ, w2<, χ<, 8AccumulatedIterations → 3,

CreationDate → 82002, 4, 3, 13, 36, 27<, Neuron → Exp,
FixedParameters → None, OutputNonlinearity → None, NumberOfInputs → 1<D
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In[19]:= NetPlot@rbf3, x, y, DataFormat → HiddenNeurons,
PlotStyle → 8Hue@.2D, Hue@.4D, Hue@.6D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@rbf2@@1, 1, 1, 1DDDDDD
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In[20]:= NetPlot@rbf3, x, yD

2 4 6 8

-1

-0.5

0.5

1

By  giving  the  option  DataFormat→ErrorDistribution,  you  obtain  a  histogram showing the  distribu-
tion of the error of the fit. This plot may indicate if you have problems with outliers.
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In[21]:= NetPlot@rbf2, x, y, DataFormat → ErrorDistributionD
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The training record can be used to evaluate the training. Section 7.8, The Training Record, shows you how to
extract  various  kinds  of  information  from  the  training  record.  You  can  also  use  NetPlot  to  plot  some
information.

Look at how the parameter values change during the training.

In[22]:= NetPlot@fitrecord, x, yD
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Parameter values versus iterations

Often,  depending  on  the  realization,  you  can  see  two  parameters  becoming  very  large,  but  with  opposite
signs. If this happens, then these two parameters are probably in w2  belonging to two identical neuron basis
functions. Since the basis functions are nearly identical, the effects of the huge parameters cancel each other.
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Check how the parameters are stored in the RBF network.

In[23]:= rbf2

Out[23]= RBFNet@88w1, λ, w2<, χ<, 8AccumulatedIterations → 3,
CreationDate → 82002, 4, 3, 13, 36, 27<, Neuron → Exp,
FixedParameters → None, OutputNonlinearity → None, NumberOfInputs → 1<D

Extract matrix w2 to check which basis function has large parameter values.

In[24]:= MatrixForm@rbf2@@1, 1, 3DDD
Out[24]//MatrixForm=i

k
jjjjjjjjjjjjjjjj
9.54363
−755.36
−1.55335
940.804
−81.4446

y
{
zzzzzzzzzzzzzzzz

By  choosing  DataFormat→FunctionPlot,  you  can  see  how  the  approximation  improves  during  the
training.

Look at the function approximation after every training iteration.

In[25]:= NetPlot@fitrecord, x, y, DataFormat → FunctionPlot,
PlotStyle → PointSize@0.02D, Intervals → 1D
Function estimate after
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Iteration: 0
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If  you prefer,  the  progress  can  be  animated as  described  in  Section  5.2.1,  Function Approximation in  One
Dimension, instead of being given in a graphics array.

You can also look at how the basis functions move during the training by giving the option DataFormat→
HiddenNeurons.
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Look at the basis functions during training.

In[26]:= NetPlot@fitrecord, x, y, DataFormat → HiddenNeurons, Intervals → 2D
Values of hidden neurons after
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From the series of neuron plots, you may see if two basis functions become equal. 
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6.2.2 Function Approximation from One to Two Dimensions

You  can  approximate  functions  with  several  outputs  in  the  same  way  as  with  one  output.  Thus,  you  can
proceed as in the previous example with the only difference being that the output data y should contain one
output in each column. The basic approach is illustrated in Section 5.2.2, Function Approximation from One
to Two Dimensions. To obtain an RBF example, you only have to change the initialization of the network to
an RBF network and to re-evaluate the whole example.

6.2.3 Function Approximation in Two Dimensions

It  is  easy  to  approximate  functions  with  several  inputs  in  the  same way as  with  single  input  functions.  A
simple example with two inputs is shown here.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data and look at the function.

In[2]:= Ndata = 10;
x = Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y = Map@Sin@10. #@@1DD #@@2DDD &, x, 82<D;
ListPlot3D@y, MeshRange → 880, 0.9<, 80, 0.9<<D;
x = Flatten@x, 1D;
y = Transpose@8Flatten@yD<D;
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You can modify the example by changing the function generating the data and by changing the number of
neuron basis functions in the following initialization. Notice that you will obtain slightly different results if

Chapter 6: The Radial Basis Function Network 135



you repeat the example without any changes at all. This is due to the randomness in the RBF initialization,
described in the algorithm for RBF network initialization.

Initialize an RBF network with two neurons.

In[8]:= rbf = InitializeRBFNet@x, y, 2D
Out[8]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 38, 31<,
OutputNonlinearity → None, NumberOfInputs → 2<D

You can apply  the  initialized network  to  the  input  data  and plot  the  network  output.  Compare  the  result
with the true function in the previous plot.

Look at the initialized RBF network.

In[9]:= y2 = rbf@xD;
ListPlot3D@Partition@Flatten@y2D, NdataD, MeshRange → 880, 0.9<, 80, 0.9<<D
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So far the network has only been initialized. Now it is time to train it.
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Fit the RBF network to the data.

In[11]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 8D;
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Normally, there are several local minima; therefore, if you repeat the initialization and the training, you can
expect to obtain different results. 

You can use NetPlot to illustrate the trained RBF network over the data range.

Look at the result with the fitted RBF network.

In[12]:= NetPlot@rbf2, x, y, DataFormat → FunctionPlotD
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This  plot  shows  the  function  approximation  after  the  eight  iterations  of  training.  NetPlot  may  also  be
applied to the training record to obtain a graphics array of function estimates at specified iteration intervals,
as shown here.

In[13]:= NetPlot@fitrecord, x, y, DataFormat → FunctionPlot, Intervals → 3D
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Iteration: 8
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If  you prefer,  the  progress  can  be  animated as  described  in  Section  5.2.1,  Function Approximation in  One
Dimension, instead of being given in a graphics array.

With the option DataFormat→ErrorDistribution, you can obtain a histogram showing the distribution
of the approximation errors.

In[14]:= NetPlot@rbf2, x, y, DataFormat → ErrorDistributionD
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6.3 Classification with RBF Networks

If you have not done so already, load the Neural Networks package.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Load data consisting of three classes divided into two clusters each. The data is represented by inputs x and
their individual classifications by output y. The data format is described in Section 3.2, Package Conventions.
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Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

Look at the data.

In[3]:= NetClassificationPlot@x, yD
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In classification problems it is important to have a nonlinearity at the output of the RBF network model. The
purpose of the nonlinearity is to ensure that the output value stays within the range indicating the different
classes. This is done by using the option OutputNonlinearity.  Its default is None.  Set it  to Sigmoid  so
that its saturating values are 0 and 1, exactly as the output data indicating the classes.

Initialize an RBF network with eight basis functions.

In[4]:= rbf = InitializeRBFNet@x, y, 8, OutputNonlinearity → SigmoidD
Out[4]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 39, 18<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 2<D

The initialized network can now be trained by using NeuralFit. 
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Train the initialized RBF network.

In[5]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 7D;
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As usual, the reduction in RMSE over the seven iterations is displayed in a plot. Often, you will also get a
warning from the program that the minimum was not reached. It is quite normal not to reach the minimum
in neural  network  training.  Neural  network  models  often  contain  so many parameters  that  it  is  extremely
difficult to determine them precisely. Instead you should inspect the RMSE plot to determine whether more
training is needed to converge to a reliable minimum. If more training is needed, you can use NeuralFit to
continue the training from where you left off. Since the result also depends on the randomness of the initial-
ization, it might be worthwhile to repeat the training with different initial models.

Obtain some information about the RBF network model.

In[6]:= NetInformation@rbf2D
Out[6]= Radial Basis Function network. Created 2002−4−3 at

13:39. The network has 2 inputs and 3 outputs. It consists
of 8 basis functions of Exp type. The network has a linear
submodel. There is a nonlinearity at the output of type Sigmoid.

The trained RBF network classifier may now be used to classify new input vectors.

Classify two data vectors.

In[7]:= rbf2@880, 0.5<, 82, 1<<D
Out[7]= 880.503741, 0.988144, 0.000395902<, 80.91636, 0.0118067, 0.083243<<
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The data vectors are classified to the class with the largest output value. If several outputs give large values,
or if none of them do, then the classifier is highly unreliable for this data.

The result can be illustrated in several ways using NetPlot.

Plot the classification borders together with the data.

In[8]:= NetPlot@rbf2, x, y, DataFormat → Classifier,
ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D
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This option can, of course, only be used in two-dimensional classification problems. 
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Look at the functions.

In[9]:= NetPlot@rbf2, x, y, DataFormat → FunctionPlot,
Ticks → 880, 1, 2<, 80, 1, 2<, 80, 0.4, 0.8<<D
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This option can be used for problems with one or two input signals. The result is given as a graphics array.
The classification boundaries are defined where the functions take the value 0.5.

By giving the option BarChart, you can obtain bar charts showing the classification performance. Correctly
classified  data  is  found  on  the  diagonal,  and  the  misclassified  data  corresponds  to  the  off-diagonal  bars.
Notice that a data vector may be assigned to several classes or to no class at all.

In[10]:= NetPlot@rbf2, x, y, DataFormat → BarChartD
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The RBF classifier with a sigmoid on the output gives outputs in the open interval 80, 1<.  This can be inter-
preted as the “degree” of membership or probability of membership. However, it is often interesting to have
a discrete answer of 0 or 1. This can be obtained in NetPlot, by specifying the option OutputNonlinearg

Chapter 6: The Radial Basis Function Network 143



ity→UnitStep,  which  will  replace  the  output  sigmoid  with  a  discrete  unit  step.  Compare  the  resulting
plot of the classifier function with the preceding one.

In[11]:= NetPlot@rbf2, x, y, DataFormat → BarChart, OutputNonlinearity → UnitStepD
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In  contrast  to  FunctionPlot  and  Classifier,  the  BarChart  option  can  be  used  for  classifiers  of  any
dimensions.

So  far  you  have  evaluated  the  end  result  of  the  training:  the  obtained  RBF  network.  Now  consider  the
training record.

In[12]:= fitrecord

Out[12]= NeuralFitRecord@RBFNet, ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

The first  component is just a copy of  the RBF network. The second component contains several items with
information about the training. Section 7.8, The Training Record, shows you how to extract the information
from the training record.  Here you will see how this information can be illustrated in different ways using
NetPlot and depending on which DataFormat option is chosen.
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Look at how the parameters change during the training.

In[13]:= NetPlot@fitrecord, x, y, DataFormat → ParameterValuesD

1 2 3 4 5 6 7

-40

-20

20

40

Parameter values versus iterations

The evolution of the classifier as a function of training iterations can be displayed using the option Classig
fier. As before, you can display snapshots at prescribed iteration intervals using the option Intervals.

Plot a classifier with a frequency three times the value of ReportFrequency.

In[14]:= NetPlot@fitrecord, x, y, DataFormat → Classifier,
Intervals → 3, ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D
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Iteration: 0
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6.4 Further Reading

RBF networks are covered in most textbooks on neural networks. Some examples are as follows:

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.
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7 Training Feedforward and Radial Basis Function Networks

This section describes  the training algorithms available for  FF networks and RBF networks using the com-
mand NeuralFit.  This  command  is  also  used  for  dynamic  networks.  First,  a  detailed  description  of  the
command is given in Section 7.1,  NeuralFit,  followed by Section 7.2,  Examples of  Different  Training Algo-
rithms. In Section 7.3, Train with FindMinimum, NeuralFit is used to call the built-in command FindMinig
mum.  In  Section  7.4,  Troubleshooting,  some  possible  remedies  to  frequent  problems  with  the  training  are
presented. Sections 7.5 to 7.8 contain examples on how the options of NeuralFit can be used to change the
basic minimization algorithm. In Section 7.9, Writing Your Own Training Algorithms, the commands Setg
NeuralD  and NeuralD  are described; they may be useful if  you want to develop your own training algo-
rithm for FF and RBF networks.

A  short  tutorial  on  the  training  (or,  equivalently,  minimization)  can  be  found  in  Section  2.5.3,  Training
Feedforward and Radial Basis Function Networks. For a more thorough background on minimization, you
can consult the references at the end of the chapter.

7.1 NeuralFit

NeuralFit is used to train FF and RBF networks. Prior to the training you need to initialize the network, as
described  in  Section  5.1.1,  InitializeFeedForwardNet,  and  Section  6.1.1,  InitializeRBFNet.  In  the  following,
net indicates either of the two possible network types.

Indirectly  NeuralFit  is  also  used  to  train  dynamic  networks,  since  NeuralARXFit  and  NeuralARFit
actually call NeuralFit. Therefore, the description given here also applies to these two commands.

To train the network you need a set of training data 8xi, yi<i=1
N  containing N input-output pairs. 

NeuralFit@net, x, yD trains the model net using input data x and output
data y for a default number of training iterations H30L

NeuralFit@net, x, y, xv, yvD
trains the model net using input data x and
output data y for a default number of training
iterations with the validation data xv, yv submitted



NeuralFit@net, x, y, iterationsD
trains the model net using input data x and
output data y for a specified number of iterations

NeuralFit@net, x, y, xv, yv, iterationsD
trains the model net using training data x and y,
with submitted validation data xv and yv,
for a specified number of iterations

Training an FF, RBF, or dynamic network.

NeuralFit  returns a list  of two variables. The first one is the trained net  and the second is an object with
head NeuralFitRecord containing information about the training.

An existing network can be submitted for  more training by setting net  equal  to the network or its  training
record.  The advantage of submitting the training record is that the information about the earlier training is
combined with the additional training.

During  the  training,  intermediate  results  are  displayed  in  an  automatically  created  notebook.  After  each
training iteration, the following information is displayed:

   è  Training iteration number

   è  The value of the RMSE

   è  If validation data is submitted in the call, then also displayed is the RMSE value computed on this 
second data set

   è  The step-size control parameter of the minimization algorithm (l or m), which is described in Section 
2.5.3, Training Feedforward and Radial Basis Function Networks

At the end of the training, the RMSE decrease is displayed in a plot as a function of iteration number.

Using the options of NeuralFit, as described in Section 7.7, Options Controlling Training Results Presenta-
tion, you can change the way the training results are presented.

At the end of the training process, you may receive different warning messages. Often, however, the RMSE
curve  flattens  out  although  no  exact  minimum is  reached.  Instead,  by  looking  at  the  RMSE  plot,  you  can
usually tell if more training iterations are necessary. If the RMSE curve has not flattened out toward the end
of the training, then you should consider continuing the training. This can be done by submitting the trained
network, or its training record, a second time to NeuralFit  so that you do not have to restart the training
from the beginning.
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If you do not want the warnings, you can switch them off using the command Off.

All  training  algorithms  may  have  problems  with  local  minima.  By  repeating  the  training  with  different
initializations of the network, you decrease the risk of being caught in a minimum giving a bad performing
network model. 

NeuralFit takes the following options.

option default values

Regularization None quadratic regularization of the criterion of fit

Method Automatic training algorithm

Momentum 0 momentum in backpropagation training

StepLength Automatic step size in steepest descent
and backpropagation training

FixedParameters None parameters excluded from training

Separable Automatic use the separable algorithm

PrecisionGoal 6 number of digits in the stop criterion

CriterionPlot Automatic criterion plot given at end of training

CriterionLog True intermediate results are logged during training

CriterionLogExtN True training progress is given in an external notebook

ReportFrequency 1 period of training log and training report

ToFindMinimum 8< list of options to be used if Method→FindMinimum

Compiled True use compiled version

MinIterations 3 minimum number of training iterations

MoreTrainingPrompt False prompts for more training iterations if set to True

Options of NeuralFit.

The  options  CriterionPlot,  CriterionLog,  CriterionLogExtN,  ReportFrequency,  and  Moreg
TrainingPrompt are common with the other training commands in the Neural Networks package, and they
are  described in Section 7.7,  Options Controlling Training Results  Presentation.  The rest  of  the  options are
explained and illustrated with examples in the section that follows.
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7.2 Examples of Different Training Algorithms

This section includes  a  small example  illustrating the different  training algorithms used by NeuralFit.  If
you  want  examples  of  different  training  algorithms  of  more  realistic  sizes,  see  the  ones  in  Chapter  8,
Dynamic Neural Networks, or Chapter 12, Application Examples, and change the option Method in the calls
to NeuralFit.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Consider the following small example where the network only has two parameters. This makes it possible to
illustrate the RMSE being minimized as a surface. To do this, you need the following package.

Read in a standard package for graphics.

In[2]:= << Graphics`Graphics3D`

The “true” function is chosen to be an FF network with one input and one output, no hidden layer and with
a sigmoidal nonlinearity at the output. The true parameter values are 2 and -1.

Initialize a network of correct size and insert the true parameter values.

In[3]:= fdfrwrd = InitializeFeedForwardNet@881<<, 881<<,8<, RandomInitialization→ True, OutputNonlinearity→ SigmoidD;
fdfrwrd@@1DD = 88882.<, 8−1.<<<<;

Generate data with the true function.

In[5]:= Ndata = 50;
x = Table@8N@iD<, 8i, 0, 5, 10êHNdata − 1L<D;
y = fdfrwrd@xD;

A two-parameter function is defined to carry out the RMSE computation. Note that this function makes use
of the generated data 8x, y< and is needed to generate the plots.

Define the criterion function.

In[8]:= criterion@a_, b_D := Hfdfrwrd@@1DD = 8888a<, 8b<<<<;
Sqrt@HTranspose@#D.#L &@y − fdfrwrd@xDDêLength@xDDL@@1, 1DD
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The criterion function can be plotted in a neighborhood of the minimum H2, -1L using Plot3D.

Look at the criterion function.

In[9]:= surf = Plot3D@criterion@a, bD, 8a, −1, 5<, 8b, −5, 3<, PlotPoints → 20D
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Now it is time to test the different training methods. The initial parameters are chosen to be H-0.5, -5L. You
can repeat the example with different initializations.

 Levenberg-Marquardt

Initialize the network and train with the Levenberg-Marquardt method.

In[10]:= fdfrwrd2 = fdfrwrd;
fdfrwrd2@@1DD = 8888−0.5<, 8−5<<<<;8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, yD;
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The  parameter  record  and  the  criterion  log  are  included  as  rules  in  the  training  record,  constituting  the
second  output  argument  of  NeuralFit.  This  information  may  be  inserted  into  a  list  of  three-element
sublists  containing  the  two  parameter  values  and the  corresponding RMSE  value  for  each  iteration  of  the
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training process. Viewing this list as three-dimensional 8x, y, z< points, it can be used to illustrate the RMSE
surface as a function of parameters using Plot3D.

Form a list of the trajectory in the parameter space.

In[13]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[14]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D
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The  8x, y, z<  iterates  of  the  training process  are  marked  with  dots  that  are  connected  with  straight  lines  to
show the trajectory. The training has converged after about five iterations.
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Gauss-Newton Algorithm

The training of the initial neural network is now repeated with the GaussNewton algorithm.

Train the same neural network with the Gauss-Newton algorithm.

In[17]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y, Method → GaussNewtonD;

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

0.2

0.4

0.6

0.8

RMSE

Form a list of the trajectory in the parameter space.

In[18]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[19]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D
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The Gauss-Newton algorithm converges in seven iterations.

Steepest Descent Method

Train the same neural network with SteepestDescent.

In[22]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y, Method → SteepestDescentD;
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The training did not converge within the 30 iterations. This is not necessarily a problem, since the parameter
values may still be close enough to the minimum.

Form a list of the trajectory in the parameter space.

In[23]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;

156 Neural Networks



Form plots of the trajectory and show it together with the criterion surface.

In[24]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D
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Toward  the  end  of  the  training  the  convergence  is  particularly  slow.  There,  the  steepest  descent  method
exhibits much slower convergence than either the Levenberg-Marquardt or Gauss-Newton methods.

Backpropagation Algorithm

When you use the backpropagation algorithm, you have to choose the step size and the momentum. It may
not be an easy matter to choose judicious values for these parameters, something that is not an issue when
using the other methods since they automatically tune the step size. You can repeat the example with differ-
ent values of these parameters to see their influence.
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Train the same neural network with backpropagation.

In[27]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y,
200, Method → BackPropagation, StepLength → 0.1, Momentum → 0.9D;
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Form a list of the trajectory in the parameter space.

In[28]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[29]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D
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Due to the momentum term used in the training, the parameter estimate goes up on the slope adjacent to the
initial parameter values. You can repeat the training with different values of the StepLength and Momeng
tum options to see how they influence the minimization.

7.3 Train with FindMinimum

If you prefer, you can use the built-in Mathematica  command FindMinimum  to train FF, RBF, and dynamic
networks. This is  done by giving the option Method→FindMinimum  to NeuralFit.  The other choices for
Method call algorithms especially written for neural network minimization and thus happen to be superior
to FindMinimum in most neural network problems.

You can submit any FindMinimum options by putting them in a list and using the option ToFindMinimum.

See the documentation on FindMinimum for further details.

Consider the following small example.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

Generate data and look at the function.

In[3]:= Ndata = 20;
x = Table@5. − 10 N@8iêNdata<D, 8i, 0, Ndata − 1<D;
y = Sin@xD;
ListPlot@AppendRows@x, yDD

-4 -2 2 4

-1

-0.5

0.5

1

Chapter 7: Training Feedforward and Radial Basis Function Networks 159



Initialize an RBF network randomly.

In[7]:= rbf = InitializeRBFNet@x, y, 4, RandomInitialization→ TrueD
Out[7]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 42, 32<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Train with FindMinimum and specify that the Levenberg-Marquardt algorithm of FindMinimum should be used.

In[8]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 50,
Method → FindMinimum, ToFindMinimum → 8Method → LevenbergMarquardt<D;

FindMinimum::fmlim :  The minimum could not be bracketed in 50 iterations.

A  main  disadvantage with  FindMinimum  is  that  it  is  hard  to  say  whether  or  not  the  training  was  in  fact
successful.  You have  no  intermediate  results  during  training and no  criterion  plot  given  at  the  end  of  the
training. You almost always get the warning at the end of the training that the minimum was not reached.
However, the trained network might be a good description of the data anyway. You can visually inspect the
model with a plot.

Plot the approximation obtained with the network.

In[9]:= NetPlot@rbf2, x, yD
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You can repeat the example changing the number of iterations and the algorithm used in FindMinimum.
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7.4 Troubleshooting

Sometimes, due to numerical problems, the training stops before reaching the minimum and without com-
pleting  the  iterations  specified.  Listed  here  are  some  measures  you  can  take  to  possibly  circumvent  this
situation.

    è   Re-initialize the network model and repeat the training.

    è   Try a different training algorithm by changing the option Method. (See Section 7.1, NeuralFit.)

    è   Exclude (or include if it is already excluded) a linear part in the network by setting the option 
LinearPart→False. (See Section 5.1.1, InitializeFeedForwardNet, or Section 6.1.1, InitializeRBF-
Net.)

    è   Decrease/increase the number of neurons in the network model.

    è   Check that the data is reasonably scaled so that unnecessary numeric problems are avoided.

7.5 Regularization and Stopped Search

A central issue in choosing a neural network model for a given problem is selecting the level of its structural
complexity that best suits the data that it must accommodate. If the model contains too many parameters, it
will approximate not only the data but also the noise in the data. Then the model is overfitting  the data. The
misfit  induced  by  noise  is  called  the  variance  contribution  to  the  model  misfit,  which  increases  with  the
number of parameters of the model. On the other hand, a model that contains too few parameters will not be
flexible enough to approximate important features in the data. This gives a bias contribution to the misfit due
to lack of  flexibility.  Since the  flexibility  increases with the number  of parameters,  the bias error  decreases
when the  model  size increases.  Deciding on the correct  amount of  flexibility  in  a neural  network model is
therefore a tradeoff between these two sources of the misfit. This is called the bias-variance tradeoff.

Overfitting  may be  avoided by  restricting the  flexibility  of  the  neural  model in  some way.  For  neural  net-
works, flexibility is specified by the number of hidden neurons.

The Neural Networks package offers three ways to handle the bias-variance tradeoff and all three rely on the
use  of  a  second,  independent  data  set,  the  so-called  validation  data,  which  has  not  been  used  to  train  the
model. 

   è  The traditional way to carry out the bias-variance tradeoff is to try different candidate neural net-
works, with different numbers of hidden neurons. The performance of the trained networks can 
then be computed on the validation data, and the best network is selected.
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   è  By specifying a regularization parameter larger than zero, a regularized performance index is mini-
mized instead of the original MSE. This type of regularization is often called weight decay in connec-
tion with neural networks.

   è  By submitting the validation data in the call to NeuralFit, you apply stopped search. The MSE is 
minimized with respect to the training data, but the obtained parameter estimate is the one that 
gave the best performance on the validation data at some intermediate iteration during the training. 

The last two of these techniques make effective use of only a subset of the parameters in the network. There-
fore,  the  number  of  efficient  parameters  becomes  lower  then  the  nominal  number  of  parameters.  This  is
described in the following two sections.

7.5.1 Regularization

You can apply regularization to the training by setting the option Regularization  to a positive number.
Then the criterion function minimized in the training becomes

(1)WN
δ HθL = VN HθL + δ θT θ

instead of VN  HqL, given in Section 2.5.3, Training Feedforward and Radial Basis Function Networks, where d
is the number you specify with the option. The second term in Equation 7.1 is called the regularization term,
which  acts  like  a  spring  pulling  the  parameters  toward  the  origin.  The  spring  only  marginally  influences
those  parameters  that  are  important  for  the  first  term VN  HqL,  while  parameters  that  do  not  have  any large
impact on VN  HqL  will be pulled to the origin by the regularization. This second class of parameters is effec-
tively excluded from the fit, thus reducing the network’s flexibility or, equivalently, reducing the number of
efficient parameters. You use d to control the importance of a parameter to the training process.

The critical issue in using regularization is to choose a good value of d. This may be done by trial and error
using validation data. Typically, you try several different d values and compare the results.

7.5.2 Stopped Search

Stopped  search  refers  to  obtaining  the  network’s  parameters  at  some  intermediate  iteration  during  the
training process  and not  at  the  final  iteration as  is  normally done.  Like  the regularization, this is  a way to
limit the number of used parameters in the network. During the training the efficient number of parameters
grows gradually and eventually becomes equal to the nominal number of parameters at the minimum of the
MSE.  Using validation data,  it  is  possible  to identify  an intermediate  iteration where the parameter values
yield a minimum MSE. At the end of the training process the parameter values at this minimum are the ones
used in the delivered network model.
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In  the  following example,  the  performance  of  this  stopped  search technique is  compared to  that  of  a  fully
trained model.

7.5.3 Example

In this small example,  you will  see how stopped search and regularization can be used to handle the bias-
variance tradeoff. The example is in a one-dimensional space so that you can look at the function. In Section
8.2.4, Bias-Variance Tradeoff—Avoiding Overfitting, a larger example is given.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Some additional standard add-on packages are needed in the example. Load them.

In[2]:= << Statistics`ContinuousDistributions`
<< Statistics`DataManipulation`

To generate data, the true function has to be defined. It is called trueFunction here and you can change it
and  repeat  the  calculations  to  obtain  several  different  examples.  You  can also  modify  the  number  of  data
samples to be generated, the noise level on the data, and the number of hidden neurons in the model.

Generate noisy data and look at it.

In[4]:= Ndata = 30;

trueFunction@xx_D := If@xx < 0, 0.3 xx, Sin@xxDD
x = Table@8N@iD<, 8i, −5, 5, 10ê HNdata − 1L<D;
y = Map@trueFunction, x, 82<D + RandomArray@NormalDistribution@0, 0.4D, 8Ndata, 1<D;
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Look at the data and the true function.

In[8]:= Show@Plot@trueFunction@xD, 8x, −5, 5<, DisplayFunction → IdentityD,
ListPlot@RowJoin@x, yD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD
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To apply stopped search, you need validation data. Thus the available data is divided into two sets: training
data and validation data.

Divide the data into training data and validation data.

In[9]:= xt = x@@Range@1, Ndata, 2DDD;
yt = y@@Range@1, Ndata, 2DDD;
xv = x@@Range@2, Ndata, 2DDD;
yv = y@@Range@2, Ndata, 2DDD;

The default  initialization of  FF and RBF networks fits the linear parameters of the network using the least-
squares algorithms, as described in Section 5.1.1, InitializeFeedForwardNet, and Section 6.1.1, InitializeRBF-
Net.  If  the  network is  overparameterized,  this  may lead to  very large values of  the linear parameters.  The
large values of the linear parameters can then cause problems in the training, especially if you want to use
regularization and stopped search. There are two straightforward ways to handle this. The first one is to use
regularization  in  the  initialization,  which  keeps  the  parameter  values  smaller.  The  second  way,  which  is
used  here,  is  to  choose  RandomInitialization→LinearParameters  so  that  the  least-squares  step  is
skipped and the linear parameters are chosen randomly.
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Initialize an FF network.

In[13]:= fdfrwrd =

InitializeFeedForwardNet@xt, yt, 84<, RandomInitialization→ LinearParametersD
Out[13]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82003, 7, 28, 21, 12, 35.4777536<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Look at the initialized network, the true function, and the training data.

In[14]:= Show@Plot@8fdfrwrd@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD
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It  is  now time to  train the  network.  Validation data is  submitted so that  stopped search can be  applied.  If

you have not set CriterionLog  to False, the value of the criterion "################WN
d  HqL  for training data and RMSEè!!!!!!!!!!!!!!!VN  HqL  for validation data are written out during the training process. At the end of the training process, a

message is given indicating at which iteration the RMSE reaches the minimum for the validation data used.
It is the parameters at that iteration that are returned and define the network model. If CriterionPlot  is

not set to False, you also get a plot at the end of the training showing the decrease of "################WN
d  HqL  for training

data and RMSE è!!!!!!!!!!!!!!!VN  HqL  for validation data.

The separable algorithm, which is described in Section 7.6, Separable Training, fits the linear parameters in
each  step  of  the  iterative  training  with  the  least-squares  algorithm.  Hence,  for  a  reason  similar  to  that  of
initializing the network without using least-squares for the linear parameters, it might be better to carry out
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the  training  without  the  separable  algorithm.  In  this  way,  extremely  large  parameter  values  are  avoided.
This is done by setting Separable→False.

Train the network.

In[15]:= 8fdfrwrd1, fitrecord< = NeuralFit@fdfrwrd, xt, yt, xv, yv, 50, Separable → FalseD;
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NeuralFit::StoppedSearch :  

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 5th training iteration.

The obtained function estimate using stopped search can now be plotted together with the true function and
the training data.

Plot the obtained estimate.

In[16]:= Show@Plot@8fdfrwrd1@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD
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If no validation data had been submitted, you would have received the parameters at the final iterations in
the model. These parameters can be extracted from the training record and put into the network model. In
that way,  you can compare the  result  obtained with stopped search shown in the plot  with the  result  you
would have received without stopped search.

Put in the parameters at the final iteration.

In[17]:= parameters = ParameterRecord ê. fitrecord@@2DD;
fdfrwrd1@@1DD = Last@parametersD;

Look at the estimate without using stopped search.

In[19]:= Show@Plot@8fdfrwrd1@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD
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Compare this with the earlier plot where stopped search was used.

Now  consider  regularization instead  of  stopped  search.  As  explained  already,  the  linear  parameters  of  an
initialized network  might  become very  large when using the  default  initialization due  to  the  least-squares
step. This may cause problems when regularization is applied, because the regularization term of the crite-
rion  dominates  if  the  parameters  are  extremely  large.  As  mentioned,  there  are  two  ways  to  handle  this:
using regularization also in the initialization, or skipping the least-square step.

For the same reason, problems may also arise when using the separable algorithm together with regulariza-
tion.  To  avoid  that,  you  can  set  Separable→False  in  the  training.  You  can  supply  validation  data  as
before. By inspecting the RMSE criterion on the validation data, you can see if the regularization parameter
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is  of  appropriate  size.  Too  small  of  a  value  gives  a  validation  error  that  increases  toward  the  end  of  the
training.

Train the network using regularization.

In[20]:= 8fdfrwrd1, fitrecord< =

NeuralFit@fdfrwrd, xt, yt, xv, yv, 30, Regularization → 0.001, Separable → FalseD;
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NeuralFit::StoppedSearch :  

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 6th training iteration.

Look at the estimate obtained using regularization.

In[21]:= Show@Plot@8fdfrwrd1@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD
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Compare the result with the ones obtained using stopped search and just normal learning.

You  can  modify  the  design  parameters  and  repeat  the  example.  Try  networks  of  different  sizes  and  with
several layers. Try an RBF network.

7.6 Separable Training

Separable  training  can  be  used  when  the  neural  network  model  is  linear  in  some  of  the  parameters.  The
separable  algorithm  gives  a  numerically  better-conditioned  minimization  problem  that  is  easier  to  solve.
Therefore, by using a separable algorithm, the training is likely to converge to the solution in fewer training
iterations. If the neural network has several outputs, the computational burden per iteration will also be less,
which will speed up the training further.

You can indicate if the separable algorithm should be used with the option Separable. The default value is
Automatic,  which  means  that  the  separable  algorithm  will  be  used  whenever  possible  for  all  training
algorithms except the backpropagation algorithm. In the following cases, the separable algorithm cannot be
used:

   è  If there is a nonlinearity at the output; that is, if OutputNonlinearity is set to anything else but 
None

   è  If some of the parameters are fixed in the training

The separable algorithm is illustrated with two examples. The first example is very simple: it has only two
parameters,  so that the result can be illustrated in a surface plot. The second example is of a more realistic
size.

7.6.1 Small Example

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

The following standard package is needed for the surface plot of the criterion.

In[2]:= << Graphics`Graphics3D`

First,  the “true” function has to  be defined,  which is then used to generate the data. To make the example
small,  with one linear and one nonlinear parameter,  a  small  FF network is  chosen.  It  consists of  one input
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and one output,  without any hidden layers and it has no bias parameter. This small network has only two
parameters and these are chosen to be H2, 1L.

Define the “true” function.

In[3]:= fdfrwrd = InitializeFeedForwardNet@881<<, 881<<,81<, RandomInitialization→ True, BiasParameters → FalseD;
fdfrwrd@@1DD = 88882.<<, 881.<<<<;

Generate data with the true function.

In[5]:= Ndata = 50;
x = Table@8N@iD<, 8i, 0, 5, 10êHNdata − 1L<D;
y = fdfrwrd@xD;

To  illustrate  the  result  with  plots  you  need  the  following  function,  which  computes  the  criterion  of  fit,
described in Section 2.5.3, Training Feedforward and Radial Basis Function Networks.

In[8]:= criterion@a_, b_D := Hfdfrwrd@@1DD = 8888a<<, 88b<<<<;
Sqrt@HTranspose@#D.#L &@y − fdfrwrd@xDD@@1, 1DDêLength@xDDL

Look at the criterion as a function of the two parameters.

In[9]:= surf = Plot3D@criterion@a, bD, 8a, 1, 3<, 8b, 0, 2<, PlotPoints → 20D
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The parameter that has the largest influence on the criterion is the linear parameter. The separable algorithm
minimizes the criterion in the direction of the linear parameter in each iteration of the algorithm so that the
iterative training follows the valley. This will be obvious from the following computations.
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The  network  is  now  initialized at  the  point  H1.1, 2L  in  the  parameter  space,  and separable  training is  com-
pared  with  the  nonseparable  training.  This  is  done  using  the  default  Levenberg-Marquardt  training  algo-
rithm. You can repeat the example using the Gauss-Newton or the steepest descent training by changing the
option Method.

Initialize the network and insert the true parameter values.

In[10]:= fdfrwrd2 = fdfrwrd;
fdfrwrd2@@1DD = 88881.1<<, 882.<<<<;

Train with the separable algorithm.

In[12]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, yD;
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Form a list of the trajectory in the parameter space.

In[13]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
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Form plots of the trajectory and show it together with the criterion surface.

In[14]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D
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As you can see from the plot, the parameter estimate is at the bottom of the valley already at the first itera-
tion. The minimization problem has been reduced to a search in one dimension, along the valley, instead of
the original two-dimensional space. The training converged after approximately five iterations.

The calculations can now be repeated but without using the separable algorithm.
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Train without the separable algorithm.

In[17]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y, Separable → FalseD;
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Form a list of the trajectory in the parameter space.

In[18]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[19]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D
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Without the separable algorithm, the training is slowed down a little. Several iterations are necessary before
the bottom of the valley is reached. Also the convergence along the valley is somewhat slower: the algorithm
needs about eight iterations to converge.

7.6.2 Larger Example

In this example, a function with two outputs is approximated.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data and look at the two outputs.

In[2]:= Ndata = 10;
x = Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y1 = Map@Sin@10. #@@1DD #@@2DDD &, x, 82<D;
y2 = Map@Sin@10. H#@@1DD − 1L #@@2DDD &, x, 82<D;
Show@GraphicsArray@8ListPlot3D@y1, DisplayFunction → IdentityD,

ListPlot3D@y2, DisplayFunction → IdentityD<DD
x = Flatten@x, 1D;
y = Transpose@8Flatten@y1D, Flatten@y2D<D;
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An RBF network containing four neurons is chosen. You can modify the structure and repeat the example.
You can also change it to an FF network.
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Initialize an RBF network.

In[9]:= rbf = InitializeRBFNet@x, y, 4, LinearPart → FalseD
Out[9]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 46, 0<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Different algorithms will be compared with respect to execution time and efficiency, that is, their RMSE rate
of decrease. The Levenberg-Marquardt algorithm is tested first using the separable algorithm.

Train 15 iterations and find the time used.

In[10]:= 8t, 8rbf2, fitrecord<< = Timing@NeuralFit@rbf, x, y, 15DD;
t
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Out[11]= 0.971 Second

Now consider the case where the separable algorithm is not used.
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Train 15 iterations and find the time used.

In[12]:= 8t, 8rbf2, fitrecord<< = Timing@NeuralFit@rbf, x, y, 15, Separable → FalseDD;
t
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Out[13]= 0.831 Second

Compare  the  obtained fit  illustrated  in  the  previous  two plots.  Normally,  the  separable  algorithm is  more
efficient, showing a larger rate of error decrease per iteration using approximately the same time.

You can repeat the example with the other training algorithms, such as Gauss-Newton and steepest descent,
by changing the option Method.

7.7 Options Controlling Training Results Presentation

The  following  options  are  the  same  for  all  training  commands  in  the  Neural  Networks  package,  with  the
exception of HopfieldFit.

   è  CriterionLog indicates if intermediate results during training should be displayed and logged in 
the training record.

   è  CriterionLogExtN indicates whether the intermediate results during training should be dis-
played in a separate notebook, which is the default, or in the current notebook.

   è  ReportFrequency indicates the interval of the intermediate results in the training record.
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   è  CriterionPlot indicates whether the performance index should be shown at the end of the 
training.

   è  MoreTrainingPrompt indicates whether you want be asked if training should be continued at the 
last iteration.

Here  are  some  examples  of  how  the  information  given  during  training  can  be  influenced  by  using  these
options. 

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

First some test data is loaded and an FF network is initialized. 

Load some test data and initialize an FF network.

In[2]:= <<onedimfunc.dat;
fdfrwrd=InitializeFeedForwardNet[x,y,{4}] 

Out[3]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,
AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 46, 53<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Using the default options gives a separate notebook where the criterion value and some control parameters
are written out after each iteration of the training algorithm. At the end of the training, the decrease of the
performance index is displayed in a plot in the current notebook. You only get the separate notebook if you
re-evaluate the commands.
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Train with the default options.

In[4]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 4D;
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If you work with large neural networks, and if you are uncertain of how many training iterations you need,
it  might  be  advantageous to  set  the  MoreTrainingPrompt→True  to  avoid the  initialization computation
when  you  call  the  training  command  several  times.  With  MoreTrainingPrompt→True  you  receive  a
question at the last iteration; you are asked to enter any number of additional training iterations before the
training terminates. You can give any positive integer; if you answer anything else the training terminates.

Prompt for more training iterations before exiting the training command.

In[5]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 4, MoreTrainingPrompt → TrueD;
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If you do not want any plot at the end of the training, you set CriterionPlot→False. You can also have
the  intermediate  results  in  the  current  notebook  instead.  This  is  done  by  setting  CriterionLogExtN→
False. The interval of the intermediate results can be set with ReportFrequency.

Train without the criterion plot and with the training result in the current notebook with interval 2.

In[6]:= 8fdfrwrd2, fitrecord< =

NeuralFit@fdfrwrd, x, y, 4, CriterionLogExtN → False, ReportFrequency → 2D;
Iteration RMSE λ

==============================

0. 0.2052

2. 0.1872 3.72

4. 0.1749 0.782
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ReportFrequency  also  indicates  the  iteration  interval  with  which  parameter  values  are  logged  in  the
training record during the training. This is described in Section 7.8, The Training Record.

If  you do  not  want  any intermediate  results  at  all  during the  training,  you can switch  them off  by setting
CriterionLog→False.

In[7]:= 8fdfrwrd2, fitrecord< =

NeuralFit@fdfrwrd, x, y, 4, CriterionPlot → False, CriterionLog → FalseD;
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The  training  process  is  speeded  up  a  little  by  excluding  the  intermediate  results  or  by  setting  the  report
frequency to a higher value.

You can reset the default using SetOptions[function, option→value]. This will change the default value for
the entire Mathematica session.

Change the CriterionLog option so that no intermediate training results are displayed.

In[8]:= SetOptions@NeuralFit, CriterionLog → FalseD
Out[8]= 8Compiled → True, CriterionLog → False, CriterionLogExtN → True,

CriterionPlot → Automatic, FixedParameters → None, Method → Automatic,
MinIterations → 3, Momentum → 0, MoreTrainingPrompt→ False,
PrecisionGoal → 6, Regularization → None, ReportFrequency → 1,
Separable → Automatic, StepLength → Automatic, ToFindMinimum → 8<<

By using SetOptions, you do not have to supply CriterionLog→False each time NeuralFit is called.

7.8 The Training Record

All  neural  network  training  functions,  with  the  exception  of  HopfieldFit,  return  lists  with  two compo-
nents.  The  first  element  is  the  trained  network,  and  the  second  element  is  a  training  record,  containing
information logged during the training. The training record can be used to graphically illustrate the training,
using  the  command  NetPlot.  The  command  works  somewhat  differently  depending  on  which  kind  of
network it  is  applied  to.  See  the  description  in  connection to  each type  of  neural  network.  This  will  show
how you can extract information directly from the training record.

First,  some  test  data  and  a  demonstration  network  are  needed.  Although  an  FF  network  is  used  in  the
example, training records from all other neural network models can be handled in the same way.

Load the Neural Networks package and test the data, then initialize and train an FF network.

In[1]:= << NeuralNetworks`

In[2]:= <<onedimfunc.dat;
fdfrwrd=InitializeFeedForwardNet[x,y,{4}];
{fdfrwrd2,fitrecord}=NeuralFit[fdfrwrd,x,y,10, CriterionPlot→False];
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Look at the training record.

In[5]:= fitrecord

Out[5]= NeuralFitRecord@FeedForwardNet,
ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

The head of the training record depends on the type of neural network training it describes. For FF and RBF
networks, trained with NeuralFit, the head is NeuralFitRecord.

The first component of the training record contains a copy of the trained network. The second component is
a list of rules. The left sides of the rules are used as pointers indicating different information.

   è  ReportFrequency indicates the value of this option when the network was trained. That is, it 
indicates the interval of training iterations at which the information is logged in the rules that 
follow.

   è  CriterionValues points at a list containing the performance index after each iteration. It can 
easily be extracted and plotted.

   è  CriterionValidationValues contains a list of the performance index on validation data. Note 
that this only holds if validation data was submitted in the call, and that can only be done with the 
NeuralFit command. See Section 7.5, Regularization and Stopped Search for more information.

   è  ParameterRecord contains a list of the parameters used during the training. The elements in the 
list have the same structure as the first element of the neural network model. 

With these specifications you can extract and use the intermediate results of the training in any way you like.
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Extract the criterion decrease and plot it.

In[6]:= ListPlot@CriterionValues ê. fitrecord@@2DD, PlotJoined → TrueD
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Extract the list of parameters versus training iterations and check the length of the list.

In[7]:= par = ParameterRecord ê. fitrecord@@2DD;
Length@parD

Out[8]= 11

The elements in the parameter list have the same structure as the parameter structure in the network. This
means that  the  parameters  at  some stage  of  the training can be  easily obtained by inserting the  parameter
values in the network. Suppose you want to obtain the network model you had after five training iterations.
Then you have to  extract  the sixth element (recall  that the initial parameters  are at  the first  position of  the
list) and put it at the first position of the network.

Find the model after the fifth iteration by putting in the parameters obtained using ParameterRecord.

In[9]:= fdfrwrd2@@1DD = par@@6DD
Out[9]= 8888−1.07433, 2.03512, 1.26074, 0.0173203<, 810.1864, −14.4612, −3.92809, 11.6643<<,888.16393<, 80.895992<, 8−7.00234<, 87.66623× 106<, 8−7.66617×106<<<<
The structure of the network is the same as before; only the values of the parameters have been changed.
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Check the structure of the network.

In[10]:= NetInformation@fdfrwrd2D
Out[10]= FeedForward network created 2002−4−3 at 13:48. The

network has 1 input and 1 output. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

7.9 Writing Your Own Training Algorithms

The  different  options  of  NeuralFit  offer  you  several  training  algorithms  for  FF  and  RBF  networks.  Its
options give you further possibilities to modify the algorithms. Nevertheless, on occasion you may want to
develop your  own training algorithm. As long as  the  network parameter  weights are  stored in the  correct
way,  as  described  in Section  13.1,  Change the  Parameter  Values  of  an Existing Network,  you may modify
their values in whatever way you want. This is, in fact, enough to let you use all the capabilities of Mathemat-
ica  to develop new algorithms. The advantage of representing the network in the standard way is that you
can apply all other functions of the Neural Networks package to the trained network.

Many algorithms are  based on the  derivative  of  the network with respect  to  its  parameters,  and SetNeug
ralD  and NeuralD  help you compute it in a numerically efficient  way. This command is described in the
following.

SetNeuralD produces the code for NeuralD. Therefore, SetNeuralD has to be called first, then NeuralD
is  used  to  compute  the  derivative.  The  advantage  of  this  procedure  is  that  SetNeuralD  optimizes  the
symbolic  expression  for  the  derivative  so  that  the  numerical  computation  can  be  performed  as  fast  as
possible.

Notice  that  SetNeuralD  only  has  to  be  called  once  for  a  given  network  structure.  It  does  not  have  to  be
recalled  if  the  parameters  have  changed;  SetNeuralD  only  needs  to  be  called  if  you change the  network
structure.  Typically,  SetNeuralD  is  called  at  the  beginning  of  a  training  algorithm and  only  NeuralD  is
used inside the training loop.

Note also that NeuralD  does  not  perform any tests of  its  input  arguments. The reason for  this is  that it  is
intended  for  internal  use.  Instead,  you  have  to  add  the  tests  yourself  in  the  beginning  of  the  training
algorithm.

This use is illustrated in the following example.
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Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Load some data.

In[2]:= << one2twodimfunc.dat;

Check the dimensions of the data.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 820, 1<
Out[4]= 820, 2<
There are 20 data samples available and there are one input and two outputs.

Initialize an RBF network.

In[5]:= net = InitializeRBFNet@x, y, 2, LinearPart → FalseD
Out[5]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 48, 43<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Generate the code to calculate the derivative.

In[6]:= SetNeuralD@netD;
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Compute the derivative.

In[7]:= der = NeuralD@net, x@@Range@3DDDD
Out[7]= 8880.0187566, 0.108421, 0.318221, 1.7893, 0.0124692, 0., 0.841608, 0., 1., 0.<,8−0.0124813, −0.0522312, −0.211755,

−0.861988, 0., 0.0124692, 0., 0.841608, 0., 1.<<,880.0347679, 0.0930977, 0.540381, 1.24297, 0.0252298, 0., 0.893275, 0., 1., 0.<,8−0.0231357, −0.0448493, −0.359587,
−0.598794, 0., 0.0252298, 0., 0.893275, 0., 1.<<,880.060082, 0.0745408, 0.848315, 0.760255, 0.0479941, 0., 0.936261, 0., 1., 0.<,8−0.0399805, −0.0359096, −0.564497,
−0.366249, 0., 0.0479941, 0., 0.936261, 0., 1.<<<

The first input argument is the network. It must have the same structure as it had when SetNeuralD  was
called,  but  the  parameter  values  may  have  changed.  The  second input  argument  should  be  a  matrix  with
one numerical input vector  on each row. The output is  better  explained by looking at the dimension of its
structure.

In[8]:= Dimensions@derD
Out[8]= 83, 2, 10<
The  first  index  indicates  the  data  sample  (the  derivative  was  computed  on  three  input  data),  the  second
index indicates the output (there are two outputs of the network), and the third index indicates the parame-
ters  (there  are  obviously  10  parameters  in  the  network).  The  derivatives  with  respect  to  the  individual
parameters are  placed in the  same order  as the parameters  in the flattened parameter structure  of the net-
work, that is, the position in the list Flatten[net[[1]]].

If some parameters should be excluded from the fit, you may indicate that in the call to SetNeuralD. Then
SetNeuralD  tests for any possible additional simplifications so that NeuralD  becomes as fast as possible.
Parameters are excluded using FixedParameters.

Exclude four parameters from the fit.

In[9]:= SetNeuralD@net, FixedParameters → 82, 5, 6, 8<D;
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Calculate the derivative of the remaining six parameters.

In[10]:= der = NeuralD@net, x@@Range@3DDDD;
Dimensions@derD

Out[11]= 83, 2, 6<
Compared  to  earlier,  there  are  now  only  six  components  in  the  third  level.  They  correspond  to  the  six
parameters, and the fixed four are considered to be constants.

7.10 Further Reading

The following are standard books on minimization:

J.  E.  Dennis  and  R.  B.  Schnabel,  Numerical  Methods  for  Unconstrained  Optimization  and  Nonlinear  Equations,
Englewood Cliffs, NJ, Prentice Hall, 1983.

R. Fletcher, Practical Methods of Optimization, Chippenham, Great Britain, John Wiley & Sons, 1987.

Stopped search and the separable algorithms are explained in the following articles:

J.  Sjöberg  and  L.  Ljung,  “Overtraining,  Regularization,  and  Searching  for  Minimum  with  Application  to
Neural Nets”, Int. J. Control, 62 (6), 1995, pp. 1391–1407.

J.  Sjöberg  and  M.  Viberg,  “Separable  Non-linear  Least-Squares  Minimization—Possible  Improvements  for
Neural  Net  Fitting”,  in  IEEE  Workshop  in  Neural  Networks  for  Signal  Processing,  Amelia  Island  Plantation,
Florida, Sep. 24–26, 1997, pp. 345–354.

This standard book on neural networks may also be of interest:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, NY, Macmillan, 1999.
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8 Dynamic Neural Networks

This  section  demonstrates  how  the  Neural  Networks  package  can  be  used  to  estimate  models  of  dynamic
systems and time series using input and output data from the system. 

A  tutorial  on  estimation  of  dynamic  systems  and  time  series  was  given  in  Section  2.6,  Dynamic  Neural
Networks.  In  Section  8.1,  Dynamic  Network  Functions  and  Options,  the  functions  and  their  options  to
estimate dynamic neural network models are given, and in Section 8.2, Examples, you find examples illustrat-
ing the use of the commands.

8.1 Dynamic Network Functions and Options

This section introduces  the  commands you need to work with dynamic neural networks.  Examples can be
found in Section 8.2, Examples.

8.1.1 Initializing and Training Dynamic Neural Networks

There  are  two commands to  obtain dynamic model  structures.  NeuralARXFit  is  used  to  model  dynamic
systems with input signals, and NeuralARFit is used to model time series where there is no external input
signal. As the names indicate, they produce neural ARX and neural AR models as described in Section 2.6,
Dynamic Neural  Networks.  The term neural  AR(X)  will  be used when either a neural ARX or a neural AR
model can be considered. There is no restriction on the dimensionality of the input and output signals; that
is,  the  package  supports  multi-input,  multi-output  (MIMO)  models.  In  contrast  to  other  neural  network
types in the Neural  Networks  package, there are no specific commands for initialization. Instead, if you only
want to initialize the dynamic neural network, you use the training commands with 0 training iterations.

Both commands call NeuralFit internally (see Section 7.1, NeuralFit). Algorithmic details are described in
Chapter  7,  Training  Feedforward  and  Radial  Basis  Function  Networks.  There  are  quite  a  few  input  argu-
ments,  and  depending  on  how  they  and  the  options  are  chosen,  a  large  variety  of  different  models  and
algorithms may be obtained.



NeuralARXFit@u, y, 8na, nb, nk<,type,nhD
initializes and estimates a neural ARX model using
input data u, output data y, regressor 8na, nb, nk<,
and neural network of type with hidden neurons nh

NeuralARXFit@u, y, 8na, nb, nk<, type, nh, uv, yv, iterationsD
initializes and estimates a neural ARX model using
input data u, output data y, regressor 8na, nb, nk<,
and neural network of type with hidden neurons nh,
also submits validation data uv and yv,
and specifies the number of training iterations

NeuralARXFit@u, y, NeuralARX, uv, yv, iterationsD
continues the training of an already-existing neural ARX
model; the arguments uv, yv, and iterations are optional

Initializing and training neural ARX models.

NeuralARXFit returns a list of two variables. The first variable is the trained neural ARX model, with head
NeuralARX, and the second is a training record.

An existing neural ARX model can be submitted for more training by setting the argument NeuralARX equal
to the neural ARX model or its training record.

The  format of  the  training data u  and y  is  described  in Section  3.2,  Package Conventions.  The regressor  is
specified  as  indicated  in  Section  2.6,  Dynamic  Neural  Networks.  The  number  of  lagged  outputs  to  be
included in the regressor is given by na, and the number of lagged inputs is given by nb. The delay is given
by nk. For SISO systems, these indices are given as three (positive) integers. For MIMO systems, each one of
them should be a list with one component for each input or output. 

The  neural  network  type  indicated  by  the  argument  type  should  be  either  FeedForwardNet  or  RBFNet.
The number of neurons (and layers for FF networks) is specified by nh as described in Section 5.1.1, Initialize-
FeedForwardNet, and Section 6.1.1, InitializeRBFNet. A linear model is obtained by choosing type =FeedForg
wardNet and nh = 8 <.
Time-series models are obtained with NeuralARFit in similar fashion to NeuralARXFit. The only differ-
ence is that only the number of lagged outputs have to be indicated in the call.
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NeuralARFit@y, na,type,nh D initializes and estimates a
neural AR model using output data y,
regressor indicated by na, and the neural network
type with hidden neurons indicated by nh

NeuralARFit@y,
na,type, nh, yv,iterations D initializes and estimates a neural AR model

using output data y, regressor indicated by na,
and the neural network type with hidden neurons
indicated by nh, also submits validation data yv
and specifies the number of training iterations

NeuralARFit@y,
NeuralAR,yv, iterationsD trains an existing neural AR model further,

where the arguments yv and iterations are optional

Initializing and estimating neural AR models.

NeuralARFit  returns  two arguments  just  as  NeuralARXFit  does;  the  first  one  is  a  model  of  type  Neug
ralAR, and the second argument is the training record.

An  existing  neural  ARX  model  can  be  submitted  for  more  training  by  setting  the  argument  Neural  ARX
equal to the neural ARX model or its training record.

In addition to the compulsory arguments of NeuralARXFit and NeuralAR, you can also specify a number
of additional arguments:

   è  The number of training iterations to be applied in the call to NeuralFit.

   è  Validation data uv and yv, so that the RMSE can be computed on validation data after each training 
iteration. The returned trained model is the model that gives the smallest RMSE on the validation 
data. This can be the model at an iteration before the last one. In that case the model is obtained by 
stopped search, which can be useful to avoid overfitting. See Section 7.5, Regularization and Stopped 
Search, for more details.

NeuralARXFit and NeuralARFit have no options of their own, but because they rely on initialization and
training of FF or RBF networks, you can submit any option applicable to InitializeRBFNet or Initial-
izeFeedForwardNet and NeuralFit.

During the  training,  intermediate  results  are  displayed in  a  separate  notebook,  which is  created  automati-
cally. After each training iteration you can see the value of the RMSE. The step length control parameter of
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the minimization algorithm is also shown; see Chapter  7,  Training Feedforward and Radial Basis Function
Networks. If you submit validation data to NeuralFit, then you also get the RMSE on this data set.

At  the  end  of  the  training,  a  plot  is  displayed  showing  the  RMSE  reduction  as  a  function  of  the  iteration
number. 

Using the various options of NeuralFit,  as described in Section 7.7, Options Controlling Training Results
Presentation, you can change the way the training results are presented.

There are often different warning messages given at the end of the training, providing some feedback as to
the success of  the training. By inspecting the error reduction plot, you can usually tell  whether more itera-
tions are necessary. Specifically,  if the curve exhibits a reasonable downward slope by the end of the train-
ing, you should consider continuing the training.

The first output argument, the neural AR(X) model, consists of two components. The first component is the
FF or the RBF network, which the model is based on. The second component is a replacement rule, Regresg
sor->{ na, nb, nk}, specifying the regressor by the three indices na, nb, and nk.

The  second output  argument  of  NeuralAR(X)Fit  is  the  training record.  Its  head  is  NeuralFitRecord,
which contains two components. The first component is a copy of the trained neural AR(X) model and the
second component is a list  of rules specifying intermediate values of parameters and the RMSE during the
training.  In  Section  7.8,  The  Training  Record,  you  learn  how  to  extract  the  information  from  the  training
record. You can also use NetPlot to plot some information.

8.1.2 NetInformation

The command NetInformation can be used to obtain some written information about the neural dynamic
model.

NetInformation@NeuralARHXLD
presents some information about the network model

NetInformation.

This information specifies the regressor and the FF or RBF network used in the model.

190 Neural Networks



8.1.3 Predicting and Simulating

Unlike the other neural network types, a dynamic model cannot be applied directly on a data input vector.
The  reason  for  this  is  that  the  models  are  dynamic  and  you  have  to  consider  sequences  of  data  to  yield
simulations and predictions. The commands for this are described in the following.

The one-step ahead prediction ỳ Ht » t - 1L is obtained as described in Section 2.6, Dynamic Neural Networks.
It is based on measured outputs up to time t - 1.

It  is  often  interesting  to  check  if  the  model  is  capable  of  performing  predictions  several  time-steps  ahead;
that  is,  to  increase  the  prediction  horizon.  Consider,  for  example,  the  two-step  ahead  prediction,  ỳ Ht » t - 2L,
where past values only up to yHt - 2L  are given. This is accomplished by using the estimate ỳ Ht - 1 » t - 2L  in
place  of  the  missing  yHt - 1L  value  to  do  the  normal  one-step  prediction.  This  procedure  may  be  similarly
extended to obtain larger prediction horizons.

If  the  prediction  horizon  is  infinite,  it  is  said  that  the  model  is  being  used  in  simulation.  Then,  measured
outputs are not used at all, and all outputs in the regressor are replaced by model outputs.

Predictions can be obtained with the command NetPredict.

NetPredict@u,y,NeuralARXD predicts the output signal y using
the model NeuralARX and input data u;
default prediction horizon: 1

NetPredict@y,NeuralARD predicts the time series y using the model NeuralAR;
default prediction horizon: 1

Predicting future outputs.

The  prediction  error,  which  is  the  difference  between  predicted  and  true  output,  can  be  obtained  using
NetPredictionError in the following way.
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NetPredictionError@
u,y,NeuralARXD computes the prediction error of the model

NeuralARX applied to data u HinputL and y HoutputL;
default prediction horizon: 1

NetPredictionError@y,NeuralARD computes the prediction error of the model NeuralAR
applied to time series data y; default prediction horizon: 1

Obtain the prediction error.

NetPredict and NetPredictionError have the following options.

option default value

PredictHorizon 1 indicates the prediction horizon;
if set to Infinity, a simulation is obtained

MultiplePrediction False obtains a series of predictions with horizons 1,
2, …, PredictHorizon if set to True

InitialOutput Automatic initial values of the lagged output values

InitialInput Automatic initial values of the lagged input values

Options of NetPredict and NetPredictionError.

The two options InitialOutput and InitialInput  can be used to set the values of the regressor at the
beginning  of  the  prediction.  The  default  is  to  use  the  first  available  value  in  the  submitted  data;  that  is,
yH-1L, yH-2L, … are set identically to yH1L and similarly for uH-1L, uH-2L, ….

You can set InitialOutput and InitialInput to other values according to the following rules.

For SISO models you can set the options to:

   è  Real numbers; in which case all lagged inputs and outputs are set to these real numbers.

   è  Sequences of lagged values that are lists of real-valued numbers, such as 8yH-1L, yH-2L, ..., yH-naL< or 8uH-1L, uH-2L, ..., uH-nk - nb + 1L<.
For MIMO models, uHtL  and yHtL  are vectors with the number of components equal to the number of inputs
and  outputs,  respectively.  Also  the  structural  indices  na,  nb,  and  nk  are  vectors.  In  this  case  the  options
InitialOutput and InitialInput can be set to:
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   è  Real numbers; in which case the lagged values of all inputs and outputs are set to these real numbers.

   è  Lists of length equal to the number of inputs/outputs; in which case all lagged values of 
input/output number m are set to the value at position m in the list.

   è  A matrix; 8yH-1L, yH-2L, ..., yH-Max@naDL< and 8uH-1L, uH-2L, ..., uHMax@-nk - nb + 1DL<, where yH-1L is a 
list with one component for each output. The rest of the rows of the matrices are set correspond-
ingly.

A model can be simulated using the command NetSimulate. A neural AR model can only be simulated if
a noise signal e is submitted in the call.

NetSimulate@u, NeuralARXD simulates NeuralARX using the input data u

NetSimulate@u, e, NeuralARXD simulates NeuralARX using
the input data u and noise data e

NetSimulate@ e, NeuralARD simulates NeuralAR using noise data e

Simulating the model.

NetSimulate has the following two options.

option default value

InitialOutput 0 initial values of the lagged output values

InitialInput Automatic initial values of the lagged input values

Options of NetSimulate.

These options were described earlier in this section in connection to the command NetPredict.

A  very  convenient  command  that  may  be  used  to  evaluate  a  model  is  NetComparePlot.  It  simulates  or
predicts the output, depending on the option PredictionHorizon,  and plots the result together with the
supplied output signal. Therefore, you can visually inspect the performance of the neural model. The RMSE
is also displayed.
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NetComparePlot@u,y,NeuralARXD
using the model NeuralARX and the data u HinputL
and y HoutputL, simulatesêpredicts and plots the output
together with the true output; default: simulation

NetComparePlot@y,NeuralARD
using the model NeuralAR and the data y HoutputL,
predicts and plots the output together with the true output

Simulate or predict and compare with true output.

You  can  change  the  prediction  horizon  using  the  same  option  PredictionHorizon  as  in  NetPredict
and NetPredictionError. Often there are transients in the beginning of the data sequence due to the fact
that initial input and output values in the regressor are incorrect; that is, the values used for yH-1L, yH-2L, …
and uH-1L, uH-2L, … .  You can remove the  transients by excluding the first  part  of  the data sequence from
the  comparison.  This  is  done  by  giving  the  start  and  end  numbers  of  the  samples  to  be  included  in  the
option ShowRange.  Another way to handle the transients is to set the initial values with the options Inig
tialOutput and InitialInput. These options were described earlier in this passage in connection to the
command NetPredict.

option default value

PredictHorizon Infinity indicates prediction horizon

ShowRange All if a list containing two integers is given,
then only the data samples between
these values are included in the comparison

InitialOutput Automatic initial values of the lagged output values

InitialInput Automatic initial values of the lagged input values

Options of NetComparePlot.

In addition to these options, you can supply any option of MultipleListPlot to modify the given plot.

8.1.4 Linearizing a Nonlinear Model

A nonlinear neural ARX or AR model can be linearized at any value of the regressor x. This is done with the
command LinearizeNet. 

194 Neural Networks



LinearizeNet@NeuralARHXL, xD
linearizes NeuralAR HXL at the regressor value x

Linearize a dynamic model.

The result is a neural AR(X) model with a linear FF network as described in  Section 5.1.5, LinearizeNet and
NeuronDelete.

8.1.5 NetPlot—Evaluate Model and Training

The command NetPlot can be used to illustrate the performance of a model, and to evaluate the training of
it.  The  command can be used in the same way as in FF and RBF networks.  Depending on how the option
DataFormat is set, the command can be used in very different ways. Here, the possibilities that are interest-
ing  in  connection  with  dynamic  models  are  presented.  Please  see  Section  5.1.4,  NetPlot,  for  other
possibilities.

NetPlot@NeuralARX,u,yD illustrates NeuralARX using input and output data u and y

NetPlot@NeuralAR,yD illustrates NeuralAR using time series data y

NetPlot@fitrecord, u,yD evaluates the training of a neural ARX model

NetPlot@fitrecord,yD evaluates the training of a neural AR model

The NetPlot function.

When NetPlot  is applied to training records from NeuralARXFit  it  takes the same options as when it is
applied to training records from NeuralFit. The following two options have different default values:
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option default value

DataFormat Automatic if a model is submitted, the default is HiddenNeurons;
if a training record is submitted,
the default is ParameterValues

Intervals 5 depending on how DataFormat is chosen,
indicates the number of bars in a bar chart or the period of
animation of the training result: if a bar chart is animated,
then the option should be a list of two integers;
the first indicates the number of
bars and the second the animation period

Options of NetPlot.

You can also submit options to modify the graphical output. Depending on the chosen option for DataFor
mat the graphic is created by BarChart, MultipleListPlot, ListPlot, Plot3D, or Histogram.

If  a  dynamic  neural  network  model  is  submitted,  then  the  option  DataFormat  can  be  given  any  of  the
following values.

   è  HiddenNeurons gives the output values of the hidden neurons as a function of time when the 
model is used for prediction on the data.

   è  LinearParameters linearizes the model at each time instant at the value of the regressor vector 
and displays the linear parameters versus data. 

   è  FunctionPlot plots the mapping using the range of the supplied data. This option can only be 
used if the model has a one- or two-dimensional regressor.

   è  ErrorDistribution gives a bar chart of the prediction errors. You can modify the presentation of 
the result using any of the options applicable to Histogram.

If you submit a training record to NetPlot, then the default value of DataFormat  is ParameterValues.
This gives a plot of the parameters versus training iterations.

Except  for  the  default  value,  ParameterValues,  you  can  also  give  DataFormat  any  of  the  possible
values.  You  then  obtain  animations  of  the  corresponding  results  as  a  function  of  the  number  of  training
iterations. The frequency of the plotting can be set with the option Intervals, which indicates the number
of iterations between each plot.
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8.1.6 MakeRegressor

Usually you do not have to care about the regressor of the dynamic model. The only thing you have to do is
to specify it  by choosing the three indices na,  nb,  and nk  when the model is  defined.  However,  in  case you
would like to compute the regressor explicitly, you can do so with the following command.

MakeRegressor@u, y, 8na, nb, nk<D gives a list of two
components: the regressor and the output using input
and output data and the specifications na, nb, and nk

MakeRegressor@y, 8na<D gives a list of two
components: the regressor and the output using
time series data according to specification na

The MakeRegressor function.

MakeRegressor  returns a list of two variables. The first variable is the regressor matrix  and the second is
the matrix of the output values. 

The  difference  between  the  returned  output  values and the  output  values submitted in  the  call  is  that  the
length of the data sequence has been shortened by as many samples as the number of lags in the regressor.

8.2 Examples

Following are examples  using measured data from a DC motor and a hydraulic actuator. Two subsequent
examples show how you can handle the bias-variance problem in two different ways. The first way is to use
fewer parameters in your neural network model. The second possibility is to modify the model structure so
that a more appropriate model may be obtained. These are, therefore, alternatives to the approach discussed
in Section 7.5, Regularization and Stopped Search. 

8.2.1 Introductory Dynamic Example

In this first example you will see how the different commands of the Neural Networks package can be used to
identify and evaluate dynamic models. You do not obtain exactly the same result if you repeat the example.
This is due to the randomly chosen input signal and the random initialization of the neural network weights.

Read in the Neural Networks package and two standard add-on packages.

In[1]:= << NeuralNetworks`

Chapter 8: Dynamic Neural Networks 197



In[2]:= <<Statistics`ContinuousDistributions`
<<Graphics`MultipleListPlot`

Generate a data set using a function defining the true system.

In[4]:= Ndata=600;
u=RandomArray[NormalDistribution[0,3], {Ndata,2}];
x=FoldList[Function[{xs,uin},{(uin[[1]]+uin[[2]]+0.6*xs[[1]]+0.8*xs[[2]])/(1+xs[[3
]]^2),0.7*xs[[2]]+uin[[2]],xs[[1]]}],{0,0,5}, Drop[u,-1]];
y=x[[All,{1,2}]];

The input data is placed in u and the output data in y.

In a real situation, the data is measured and an approximation of the unknown true function generating the
data  is  estimated  using  a  dynamic  neural  network.  This  situation  is  now  imitated  and  a  neural  network
approximating the data generating function is estimated.

Check the dimensions of the data.

In[8]:= Dimensions@uD
Dimensions@yD

Out[8]= 8600, 2<
Out[9]= 8600, 2<
There are 600 data samples available, and the plant has two inputs and two outputs. It is a good idea to look
at the data before you start to estimate a model. From a plot you can see if the data look strange in some way
that makes the training of a network hard. 
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Look at the first input signal.

In[10]:= ListPlot@u@@All, 1DD, PlotJoined → True, PlotRange → AllD
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Look at the second input signal.

In[11]:= ListPlot@u@@All, 2DD, PlotJoined → True, PlotRange → AllD
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Look at the first output signal.

In[12]:= ListPlot@y@@All, 1DD, PlotJoined → True, PlotRange → AllD

100 200 300 400 500 600

-15

-10

-5

5

10

15

Look at the second output signal.

In[13]:= ListPlot@y@@All, 2DD, PlotJoined → True, PlotRange → AllD
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The first half of the data set is used for identification and the second half for validation of the model.

Divide the data into identification and validation data.

In[14]:= ue = u@@Range@Ndataê2DDD;
ye = y@@Range@Ndataê2DDD;
uv = u@@Range@Ndataê2 + 1, NdataDDD;
yv = y@@Range@Ndataê2 + 1, NdataDDD;

In  this  example  the  true  function  is  known  and  the  regressor  should  be  chosen  to
xHtL = 8y1 Ht - 1L, y1 Ht - 2L, y2 Ht - 1L u1 Ht - 1L, u2 Ht - 1L<,  which  is  obtained  by  choosing  na = 82, 1<, nb = 81, 1<,

200 Neural Networks



and nk = 81, 1< as described in Section 2.6, Dynamic Neural Networks. In real situations, when the generating
function is unknown, you usually have to find the best regressor by trial-and-error.

It  is  always  good  to  start  with  a  linear  model.  This  is  obtained  by  using  an  FF  network  without  hidden
neurons, as described in Section 5.1.1, InitializeFeedForwardNet. The performance of the linear model gives
a quality measure that you want your nonlinear neural network model to beat.

Estimate a linear model.

In[18]:= 8model1, fitrecord< = NeuralARXFit@ue, ye,882, 1<, 81, 1<, 81, 1<<, FeedForwardNet, 8<, 0, CriterionPlot → FalseD;
Find some information about the model.

In[19]:= NetInformation@model1D
Out[19]= NeuralARX model with 2 input signals and 2 output signals. The regressor is

defined by: na = 82, 1<, nb = 81, 1<, nk = 81, 1<. The mapping from
regressor to output is defined by a FeedForward network created 2003−7−28
at 21:14. The network has 5 inputs and 2 outputs. It has no hidden layer.

The command NetComparePlot  is very convenient for  evaluating dynamic models. Depending on which
value you choose of the option PredictionHorizon, the model can be a simulator or a predictor. For each
output, the model output is displayed together with the true output signal, and the root-mean-square error
is given in the plot title. This type of test is only fair if you use fresh data, that is, the validation data for the
comparison. 

Chapter 8: Dynamic Neural Networks 201



Obtain the one-step-ahead prediction with the linear model and compare it with the true output signal.

In[20]:= NetComparePlot@u, y, model1, ShowRange → 8Ndataê2 + 1, Ndata<, PredictHorizon → 1,
PlotStyle → 8Hue@.6D, Hue@.8D<, PlotLegend → 8"True", "Simulated"<D
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By including the whole data set  in the call,  and then indicating the validation data with the option Showg
Range, you avoid transients in the beginning of the plotted prediction.

From the plot you see that the second output is described almost perfectly by the linear model, but there are
inconsistencies in the first output. This is not surprising if you take a closer look at the true function generat-
ing the data. The second output can be described by a linear model but the first output cannot. To model the
first output better, you need to make the neural network nonlinear by including some neurons. This will be
done later in this section.

You  can  also  use  the  command  NetSimulate  or  NetPredict  to  perform  simulations  and  predictions.
They  give  you  the  simulated  and predicted  outputs  in  the  same  format  as  the  original  output  signal.  The
obtained simulation and prediction can then, for  example, be plotted with the true output.
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Simulate the linear model and plot the first 100 values of the validation data together with the true output.

In[21]:= ys = NetSimulate@u, model1D;
In[22]:= MultipleListPlot@y@@Ndataê2 + Range@100D, 1DD,

ys@@Ndataê2 + Range@100D, 1DD, PlotJoined → True,
PlotLegend → 8"True", "Simulation"<, PlotStyle → 8Hue@0.6D, Hue@0.9D<D
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Estimate a nonlinear model based on an FF network with 4 neurons and with the same regressor as the linear model.

In[23]:= 8model2, fitrecord< =

NeuralARXFit@ue, ye, 882, 1<, 81, 1<, 81, 1<<, FeedForwardNet, 84<, uv, yv, 50D;
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NeuralFit::StoppedSearch :  

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 39th training iteration.
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Note that if you repeat the example, the result will turn out differently due to randomness in data and in the
network  initialization.  You  might  need  more  training  iterations,  or  you  might  get  caught  in  a  local  mini-
mum. 

Compare the one-step-ahead prediction with the true output.

In[24]:= NetComparePlot@u, y, model2, ShowRange → 8Ndataê2 + 1, Ndata<, PredictHorizon → 1,
PlotStyle → 8Hue@.6D, Hue@.8D<, PlotLegend → 8"True", "Simulation"<D
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Compare this with the prediction of linear model. The first output is much better predicted, but the second
is slightly worse.

The  difference  between  the  two  models  can  be  illustrated  by  comparing  the  prediction  errors  in  common
plots.
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Compute and plot the prediction errors using the linear and nonlinear models.

In[25]:= e1 = NetPredictionError@uv, yv, model1D;
e2 = NetPredictionError@uv, yv, model2D;

In[27]:= MultipleListPlot@e1@@All, 1DD, e2@@All, 1DD,
PlotRange → All, PlotJoined → True, PlotStyle → 8Hue@0.6D, Hue@0.9D<,
PlotLabel → "First output", PlotLegend → 8"Linear", "Nonlinear"<D
MultipleListPlot@e1@@All, 2DD, e2@@All, 2DD,
PlotJoined → True, PlotStyle → 8Hue@0.6D, Hue@0.9D<,
PlotLabel → "Second output", PlotLegend → 8"Linear", "Nonlinear"<D
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As you see from the plots, the errors of the linear model dominate the first output, but for the second output
the  nonlinear model  gives  the  largest  error.  The scales  of  the  prediction errors  of  the  two ouputs  are  very
different, however.

An  analytic  expression  of  dynamic  neural  network  models  is  obtained  by  evaluating  the  neural  network
placed at the first position of the neural ARX model on a vector with length equal the number of regressors.
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Express the linear ARX model analytically.

In[29]:= model1@@1DD@8y1@t − 1D, y1@t − 1D, y2@t − 2D, u1@t − 1D, u2@t − 1D<D@@1DD
Out[29]= 0.0272013 + 0.621573 u1@−1 + tD +

0.529971 u2@−1 + tD − 0.0571367 y1@−1 + tD + 0.543105 y2@−2 + tD
The expression of the nonlinear model is much more complicated.

Express the nonlinear neural ARX model analytically.

In[30]:= model2@@1DD@8y1@t − 1D, y1@t − 1D, y2@t − 1D, u1@t − 1D, u2@t − 1D<D@@1DD
Out[30]= 252.266 − 0.19221êH1 + Æ−6.74106−0.122178 u1@−1+tD−0.0958901 u2@−1+tD−0.0656796 y1@−1+tD−0.239055 y2@−1+tDL −

694.073ê H1 + Æ0.561709+4.5562×10−7 u1@−1+tD+0.000317567 u2@−1+tD−1.15007×10−7 y1@−1+tD+0.000222354 y2@−1+tDL +

380694.ê H1 + Æ−0.0183979−0.00648828 u1@−1+tD−0.00203839 u2@−1+tD+1.64912 y1@−1+tD+0.00916544 y2@−1+tDL −
380694.ê H1 + Æ−0.018398−0.00647792 u1@−1+tD−0.00202864 u2@−1+tD+1.64913 y1@−1+tD+0.00917335 y2@−1+tDL

The  symbolic  expressions may be  useful  if  you want to  use  general  Mathematica  commands to  manipulate
the neural network expression.

8.2.2 Identifying the Dynamics of a DC Motor

In this example you will see how the Neural Networks package can be used to model the dynamics of a DC
motor. The input signal is the applied voltage and the output signal is the angular speed of the motor.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << dcmotor.dat;

The input data is placed in u and the output data in y.
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Check the dimensions.

In[3]:= Dimensions@uD
Dimensions@yD

Out[3]= 8200, 1<
Out[4]= 8200, 1<
There are 200 data samples available, and the plant has one input and one output.

It is always a good idea to visually inspect the data before the modeling. This might allow you to detect any
outliers in the data.

Show the input signal.

In[5]:= ListPlot@Flatten@uD, PlotJoined → TrueD
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Show the output signal.

In[6]:= ListPlot@Flatten@yD, PlotJoined → TrueD
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By inspecting the plots you might find outliers,  which should be removed before  the system identification
procedure starts.

The first half of the data set is used for identification and the second half for validation of the model.

Divide the data into identification and validation data.

In[7]:= ue = u@@Range@100DDD;
ye = y@@Range@100DDD;
uv = u@@Range@101, 200DDD;
yv = y@@Range@101, 200DDD;

It is a good idea to try a linear model first and then try to obtain a better nonlinear model. Using Maxwell’s
and Newton’s laws, the following linear relationship for the DC motor could be expected.

(1)ŷ HtL = ay Ht − 1L + bu Ht − 1L + c

This  means  that  the  regressor  should  be  chosen  to  xHtL = 8yHt - 1L uHt - 1L<,  which  is  obtained  by  choosing
na = 1, nb = 1, and nk = 1.

The linear model has three parameters, a, b, and, c. You specify and train this linear model structure with the
following call.

In[11]:= 8model1, fitrecord< =

NeuralARXFit@ue, ye, 81, 1, 1<, FeedForwardNet, 8<, 0, CriterionPlot → FalseD;
Find some information about the model.

In[12]:= NetInformation@model1D
Out[12]= NeuralARX model with 1 input signal and 1 output signal. The regressor

is defined by: na = 1, nb = 1, nk = 1. The mapping from regressor to
output is defined by a FeedForward network created 2002−4−3 at 13:
56. The network has 2 inputs and 1 output. It has no hidden layer.

The command NetComparePlot  is very convenient for  evaluating dynamic models. Depending on which
option you choose, the model can be a simulator or a predictor. The model output is displayed together with
the true output signal. This type of test is only fair if  you use fresh data, that is, the validation data for the
comparison. 
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Simulate the linear model and compare it with the true output signal.

In[13]:= NetComparePlot@u, y, model1, PredictHorizon → Infinity,
ShowRange → 8101, 200<, PlotStyle → 8Hue@.6D, Hue@.8D<D
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Output signal: 1 RMSE: 0.113045

By including the whole data set  in the call,  and then indicating the validation data with the option Showg
Range, you avoid transients in the beginning of the simulation.

You  can  also  use  the  command  NetSimulate  or  NetPredict  directly  instead  of  calling
NetComparePlot.

It is hard to see any difference between the true and the simulated output signal in the plot, and, obviously,
the  linear  model  is  quite  good  at  explaining  the  relationship  in  the  data.  A  nonlinear  model  will  now  be
trained to see if it becomes better than the linear model. The dynamic model can be described by

(2)y HtL = g Hθ, y Ht − 1L, u Ht − 1LL
where g(q, ·, ·) is the neural network function whose parameters q are to be trained.
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Train an FF network on the DC-motor data.

In[14]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 81, 1, 1<, FeedForwardNet, 83<, 50D;
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Depending  on  the  initialization you  may  end  up  in  any  one  of  many local  minima.  Notice  that  the  result
changes if  you re-evaluate  the  training command due  to  the  randomness in  the initialization of  the  neural
network. If the criterion at the end of the learning is larger than 0.05, you should repeat the command.

Simulate the nonlinear neural network model.

In[15]:= NetComparePlot@u, y, model2, PredictHorizon → Infinity,
ShowRange → 8100, 200<, PlotStyle → 8Hue@.6D, Hue@.8D<D
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Output signal: 1 RMSE: 0.0424852

The  nonlinear  neural  network  model  should give  an  RMSE  of  less  than half  of  what  you obtained for  the
linear model. However, because the models are so good it is hard to see any difference in the plots. Instead
you can look at the prediction errors, that is, the difference between the true output and the model output.
To do that you can use the command NetPredictionError.
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Compute and plot the prediction errors using the linear and nonlinear models.

In[16]:= e1 = NetPredictionError@uv, yv, model1D;
e2 = NetPredictionError@uv, yv, model2D;
<< Graphics`MultipleListPlot ;̀
MultipleListPlot@Flatten@e1D, Flatten@e2D, PlotJoined → True,
PlotStyle → 8Hue@0.6D, Hue@0.9D<, PlotLegend → 8"Linear", "Nonlinear"<D
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It should be evident  from the plot that the prediction errors of the nonlinear model are much smaller than
those of the linear model.

Since the model describing the DC motor has only two regressor components, it is possible to look at gHq, xL.
But because the linear and nonlinear models are very similar,  it  is hard to see anything other than a linear
relationship.

Plot the nonlinear model of the DC motor.

In[20]:= NetPlot@model2, uv, yv, DataFormat → FunctionPlotD
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It is, however, fairly easy to plot the difference between the linear and nonlinear models. This can be done by
extracting  the  linear  parameters  from the  linear  model  and  inserting them  with  opposite  signs  as  a  linear
submodel in the nonlinear model. Section 13.1, Change the Parameter Values of an Existing Network, gives
more details on how you can change the parameters in an existing neural network.

Plot the difference between linear and nonlinear models.

In[21]:= model3 = model2;
model3@@1, 1DD = 8model2@@1, 1, 1DD, −model1@@1, 1, 1, 1, 81, 2<DD<;
NetPlot@model3, uv, yv, DataFormat → FunctionPlotD
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Now it is easy to see that the relationship is far from being linear.

An  analytic  expression  of  the  dynamic  model  can  be  obtained  by  using  the  neural  net  placed  at  the  first
position.

Express the neural ARX model analytically.

In[24]:= model2@@1DD@8yy@t − 1D, uu@t − 1D<D@@1DD
Out[24]= 24.9618 +

20174.5
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ10.1785−0.647103 uu@−1+tD−0.0877935 yy@−1+tD −

2301.18
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ4.46849+0.118863 uu@−1+tD+0.0148835 yy@−1+tD +

0.385491
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Æ−3.22387−55.0474 uu@−1+tD+0.313509 yy@−1+tD

Similarly, it might be interesting to have the equation of the plane describing the first linear ARX model.
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Describe the first linear ARX model.

In[25]:= model1@@1DD@8yy@t − 1D, uu@t − 1D<D@@1DD
Out[25]= −0.137853 + 3.91426 uu@−1 + tD + 0.459061 yy@−1 + tD
8.2.3 Identifying the Dynamics of a Hydraulic Actuator

In this example the dynamics of a hydraulic actuator will be modeled. The data used was kindly provided
by P. Krus at the Fluid Power Technology group of the Department of Mechanical Engineering, Linköping
University, http://hydra.ikp.liu.se.

The input signal is the opening of a valve, which influences the flow of oil into a cylinder acting on a robot
arm. The oil pressure is the output signal that relates to the position of the robot arm. The goal is to find a
mathematical model describing how the valve opening influences the oil pressure.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << actuator.dat;

The input data is placed in u and the output data in y.

Check the dimensions.

In[3]:= Dimensions@uD
Dimensions@yD

Out[3]= 81024, 1<
Out[4]= 81024, 1<
The 1024 input and output data samples involved are plotted.
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Plot the input signal.

In[5]:= ListPlot@Flatten@uD, PlotJoined → TrueD
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Plot the output signal.

In[6]:= ListPlot@Flatten@yD, PlotJoined → TrueD
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As in  the  previous  example,  the  first  half  of  the  data  set  is  used for  identification and the  second half  for
validation of the model.

Divide the data set into estimation and validation data.

In[7]:= ue = u@@Range@512DDD;
ye = y@@Range@512DDD;
uv = u@@Range@513, 1024DDD;
yv = y@@Range@513, 1024DDD;

The first candidate model is a linear model so that you have something to compare the nonlinear model to.
The  chosen  regressor  indices  are  na = 3,  nb = 2,  and  nk = 1,  which  give  a  regressor
xHtL = 8yHt - 1L, yHt - 2L, yHt - 3L, uHt - 1L, uHt - 2L<. The linear model then becomes
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(3)yHtL = qT  xHtL + q0

where q is a parameter vector of length 5 and q0 is a level parameter.

A  linear  model  is  obtained  by  using  a  FeedForwardNet  without  any  hidden  layer.  Since  the  parameter
estimate of  linear models  can be  computed exactly  with only one training iteration, no iterative training is
necessary.

Estimate a linear model of the hydraulic actuator.

In[11]:= 8model1, fitrecord< =

NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 8<, 0, CriterionPlot → FalseD;
Provide information about the model.

In[12]:= NetInformation@model1D
Out[12]= NeuralARX model with 1 input signal and 1 output signal. The regressor

is defined by: na = 3, nb = 2, nk = 1. The mapping from regressor to
output is defined by a FeedForward network created 2002−4−3 at 13:
57. The network has 5 inputs and 1 output. It has no hidden layer.

Use NetComparePlot to produce a prediction and compare the result to the true output. Since the first half
of the data was used for training, the second half is used for a fair validation.

A short prediction horizon will often yield good prediction performance if the signals are dominated by low
frequencies. Therefore, it might be hard to evaluate the model’s quality from a one-step prediction, which is
shown here.

Chapter 8: Dynamic Neural Networks 215



Compare a one-step prediction with the true output.

In[13]:= NetComparePlot@uv, yv, model1, PredictHorizon → 1D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.110583

The one-step prediction looks good, and it is hard to see the difference between the predicted and the true
output.  Often  it  is  more  interesting  to  look  at  the  result  using  a  larger  prediction  horizon  or  a  pure
simulation.

Compare a simulation with the true output.

In[14]:= NetComparePlot@uv, yv, model1,
PredictHorizon → Infinity, PlotLegend → 8"True", "Simulated"<D
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Output signal: 1 RMSE: 0.951624
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After having obtained a linear model, you can try to derive a better nonlinear one. This can be done by using
the same regressor as earlier, but adding a hidden layer to the network.
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Train an FF network with four neurons on the hydraulic actuator.

In[15]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 84<, 15D;
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Depending on the  initialization, the training ends up in different  local  minima. If  the result  is  not satisfac-
tory, you can repeat the training; a new initialization is used each time.

Simulate the nonlinear model and compare the result with the true output.

In[16]:= NetComparePlot@uv, yv, model2,
PredictHorizon → Infinity, PlotLegend → 8"True", "Simulated"<D
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Evaluate the model on validation data using a one-step prediction.

In[17]:= NetComparePlot@uv, yv, model2, PredictHorizon → 1D
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Output signal: 1 RMSE: 0.10438

Is the performance better than the linear model?

It might be interesting to look at the prediction errors to see where on the data sequence the model performs
well.

Compute and plot the prediction errors.

In[18]:= ep = NetPredictionError@uv, yv, model2, PredictHorizon → 1D;
ListPlot@Flatten@epD, PlotJoined → True, PlotRange → AllD
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You  can  also  look  at  the  distribution  of  the  prediction  errors.  Such  a  plot  can  indicate  if  the  model  has
problems explaining some individual data samples.
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Display the distribution of the prediction errors with a histogram.

In[20]:= NetPlot@model2, uv, yv, DataFormat → ErrorDistributionD
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You can plot the linearization at each sampling instant. The smaller the variations in the parameter values of
the linear model over the data domain, the closer the underlying model is to a linear model. A curve that is
close  to  zero  over  the  whole  data  domain  indicates  that  a  smaller  model  with  fewer  regressors  could  be
better (assuming the same range of all signals).

Display the linearization of the nonlinear model versus the data samples.

In[21]:= NetPlot@model2, uv@@Range@30DDD, yv@@Range@30DDD, DataFormat → LinearParametersD
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8.2.4 Bias-Variance Tradeoff—Avoiding Overfitting

As described in Section 7.5, Regularization and Stopped Search,  it  is critical to find the appropriate type of
model and the appropriate number of parameters of the model. 

In this example three ways to avoid overfitting are demonstrated: choosing a network with a sufficiently low
number of neurons, using stopped search for the minimum, and applying regularization. 

The  data  from  the  hydraulic  actuator  from  the  previous  example  is  used  to  demonstrate  these  alternative
options. You may refer to the previous example if you want an introduction to this data set.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << actuator.dat;

The first half of the data set is used for identification and the second half for validation of the model.

In[3]:= ue = u@@Range@512DDD;
ye = y@@Range@512DDD;
uv = u@@Range@513, 1024DDD;
yv = y@@Range@513, 1024DDD;

Train a nonlinear neural ARX model with many neurons on the data.

Train an FF network on the hydraulic actuator.

In[7]:= 8model1, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 88<, 40D;
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Depending on the initialization you end up in different local minima. If the result is not satisfactory you may
repeat the training, which will use a new initialization.

Evaluate the model on validation data using a four-step prediction.

In[8]:= NetComparePlot@uv, yv, model1, PredictHorizon → 4D

0 100 200 300 400 500

-4

-2

0

2

Output signal: 1 RMSE: 0.427808

The result of the prediction depends on which minimum the training converged to, but usually the result is
worse than that of a linear model. You may try a linear model for comparison.

Estimate a linear model and display the four-step prediction.

In[9]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<,
FeedForwardNet, 8<, 0, CriterionPlot → False, CriterionLog → FalseD;

NetComparePlot@uv, yv, model2, PredictHorizon → 4D
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Output signal: 1 RMSE: 0.415044

The reason why the nonlinear model was worse than the linear model is that it had more degrees of freedom
than  necessary;  that  is,  it  used  more  parameters  than  necessary.  In  contrast,  the  linear  model  used  fewer
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parameters than necessary. By choosing somewhere between 0 and 8 hidden neurons, it might be possible to
find a better model. This is the first way to handle the bias-variance tradeoff.

Estimate and predict a model with four hidden neurons.

In[11]:= 8model3, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 84<, 20D;
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In[12]:= NetComparePlot@uv, yv, model3, PredictHorizon → 4D
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Output signal: 1 RMSE: 0.296174

Is the result better than the linear model and the model with eight neurons? Try other numbers of neurons
and repeat the training.

You can also submit the validation data to the training algorithm. The criterion is then evaluated after each
iteration. As described in Section 7.5, Regularization and Stopped Search, the most important parameters are
adapted in the beginning of the training and the least important at the end. The performance of the network
model during the training is illustrated by the plot of the criterion evaluated on the validation data, which is
shown at the end of  the training. If  the model starts to  become worse after some number of training itera-
tions then the model is overtrained.
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Train a large network but supply the validation data.

In[13]:= 8model4, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet,88<, uv, yv, 40, RandomInitialization→ LinearParametersD;

0 5 10 15 20 25 30 35 40
Iterations

0.2

0.4

0.6

0.8

1

1.2
RMSE

NeuralFit::StoppedSearch :  

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 20th training iteration.

Is there any overtraining? Usually there is when you use such a large network, but, depending on initializa-
tion, overtraining may not be an issue.

If you submit validation data, the desired model is not necessarily the one obtained at the end of the training
process. The desired model is the one that gives the best match to the validation data, which could exist at
an  intermediate  iteration  in  the  training  process.  Therefore,  by  supplying  validation  data  you  can  do  the
bias-variance tradeoff by stopped search; that is,  stopping the training at the iteration where the prediction
best matches the validation data.
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Predict with the model obtained by stopped search.

In[14]:= NetComparePlot@uv, yv, model4, PredictHorizon → 4D
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Output signal: 1 RMSE: 0.310709

When validation data is submitted in the training, you automatically obtain a stopped search model. If you
want the model at the last iteration instead, it is possible to get it by using the training record. It contains a
list of the parameters after each training iteration.

Check the storing format of the training record.

In[15]:= fitrecord

Out[15]= NeuralFitRecord@NeuralARX, ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

Note  that  the  value  of  ReportFrequency  indicates  the  iteration  frequency  with  which  parameter  values
are logged.

Extract the parameters versus training iterations and check the length of the parameter list.

In[16]:= parameters = ParameterRecord ê. fitrecord@@2DD;
Length@parametersD

Out[17]= 41

The length of  the parameter log equals the number of iterations, including one for  the initial estimate. The
model  at  the  last  iteration  can  now  be  compared  to  the  one  obtained  with  the  preceding  stopped  search
technique. This can be done in the following way. First check how the information is stored in the model.
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In[18]:= model4

Out[18]= NeuralARX@FeedForwardNet@88w1, w2<<,8AccumulatedIterations → 40, CreationDate → 82003, 7, 28, 21, 22, 0.7205328<,
Neuron → Sigmoid, FixedParameters → None,
OutputNonlinearity → None, NumberOfInputs → 5<D, Regressor → 83, 2, 1<D

Create a new model with the same structure as the previous one and insert the last parameter values from
the training record.

In[19]:= model5 = model4;
model5@@1, 1DD = Last@parametersD;

Predict using the final model.

In[21]:= NetComparePlot@uv, yv, model5, PredictHorizon → 4D
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Output signal: 1 RMSE: 0.502187

Now, compare the performance of this model with that of the stopped search model.

If you do not want to use the stopped search feature, it might be interesting to submit validation data in the
training. If the performance measured on validation data increases toward the end of the training, then this
indicates  that  the  chosen model  has  too  much flexibility.  You should choose  a  neural  network  with fewer
neurons (or use stopped search).

The  third  way  to  handle  the  bias-variance  tradeoff  is  to  use  a  large  model  but  to  minimize  a  regularized
criterion, as described in Section 7.5, Regularization and Stopped Search.

Chapter 8: Dynamic Neural Networks 225



Train a neural network using regularization.

In[22]:= 8model6, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 88<, uv, yv,
15, RandomInitialization→ LinearParameters, Regularization → 0.0001D;
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Evaluate the regularized network model.

In[23]:= NetComparePlot@uv, yv, model6, PredictHorizon → 4D
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Output signal: 1 RMSE: 0.34202

How  does  the  regularized  model  perform  compared  to  the  other  two  ways  of  handling  the  bias-variance
tradeoff? 

In this example you have seen three ways to handle the bias-variance tradeoff: (1) use a sparse model, which
does not have more parameters than necessary; (2) use a large model in connection with the validation data
to  apply stopped  search,  so that  only  a  subset  of  the  parameters  are  used;  and (3)  use  a  large model  with
regularization so that only a subset of the parameters are used.
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8.2.5 Fix Some Parameters—More Advanced Model Structures

Sometimes it can be interesting to exclude some of the parameters from the training process. In this way, it is
possible  to  obtain  special  model  structures,  where  some  features  are  built  into  the  model  at  initialization.
Addressed  in  the  following  is  a  special  model  for  the  hydraulic  actuator  problem  discussed  earlier.  The
option FixedParameters  is  used  to  exclude  parameters  from the  fit,  and it  is  explained  in  Section  13.2,
Fixed Parameters.

There are reasons to believe that most of the nonlinear behavior of the hydraulic actuator is near the physical
input of the system, where the oil streams into the cylinder. Hence, it could be interesting to include only the
past input values of the regressor in the nonlinear part of the model, while keeping the model linear in the
past output values. Using a regressor similar to that used in the previous two examples yields the following
model:

(4)
ŷ HtL =

a1 y Ht − 1L + a2 y Ht − 2L + a3 y Ht − 3L + g Hθ, u Ht − 1L, u Ht − 2LL
where gHq, uHt - 1L, uHt - 2LL is a neural network.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << actuator.dat;

Divide the data into training and validation data.

In[3]:= ue = u@@Range@512DDD;
ye = y@@Range@512DDD;
uv = u@@Range@513, 1024DDD;
yv = y@@Range@513, 1024DDD;

Before fixing the parameters, an initial model is obtained by invoking training with zero iterations. Note that
you  can  repeat  the  example  with  different  models  by  modifying  the  structure  indices  na,  nb,  nk,  and  nh.
Choose an FF network with two hidden layers.
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Obtain an initial FF network model with two hidden layers.

In[7]:= na = 3; nb = 2; nk = 1; nh = 83, 3<;8model1, fitrecord< = NeuralARXFit@ue, ye, 8na, nb, nk<,
FeedForwardNet, nh, 0, LinearPart → True, CriterionPlot → FalseD;

Inspect the format of the model.

In[9]:= model1

Out[9]= NeuralARX@FeedForwardNet@88w1, w2, w3<, χ<,8AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 7, 32<,
Neuron → Sigmoid, FixedParameters → None,
OutputNonlinearity → None, NumberOfInputs → 5<D, Regressor → 83, 2, 1<D

It is the first na rows of w1, corresponding to the past y values, that have to be set to zero. Refer to the descrip-
tion in Section 2.6, Dynamic Neural Networks.

Take a look at the w1 matrix.

In[10]:= w1 = model1@@1, 1, 1, 1DD ;
MatrixForm@w1D

Out[11]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjj
−0.32458 −1.52618 0.322549
−0.685248 −0.0795772 1.15006
−0.628164 2.74448 0.129114
0.0613149 −3.40022 0.729567
−0.1638 −0.0633633 −0.871552
2.60667 4.00491 0.521309

y
{
zzzzzzzzzzzzzzzzzzzzz

Set the first na rows to zero.

In[12]:= model1@@1, 1, 1, 1, 81, 2, 3<DD = Table@0, 8na<, 8nh@@1DD<D;
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Check that the manipulation is correct.

In[13]:= w1 = model1@@1, 1, 1, 1DD ;
MatrixForm@w1D

Out[14]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjj

0 0 0
0 0 0
0 0 0

0.0613149 −3.40022 0.729567
−0.1638 −0.0633633 −0.871552
2.60667 4.00491 0.521309

y
{
zzzzzzzzzzzzzzzzzzzzz

The  parameters  that  have  been  set  to  zero  also  have  to  remain  zero  during  the  training.  Therefore,  the
zeroed parameters have to be held fixed in the training. To do that you need to know their positions in the
flattened parameter list of the model. You find the position easily by a search of the zeros.

Find the indices of the parameters to be held fixed.

In[15]:= fixparameters = Flatten@Position@Flatten@model1@@1, 1DDD, 0DD
Out[15]= 81, 2, 3, 4, 5, 6, 7, 8, 9<

Train the network holding the zeroed parameters fixed.

In[16]:= 8model2, fitrecord< =

NeuralARXFit@ue, ye, model1, 30, FixedParameters → fixparametersD;
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The trained model can now be tested on the validation data.
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Compare four-step prediction with the true output on the validation data.

In[17]:= NetComparePlot@uv, yv, model2, PredictHorizon → 4D

0 100 200 300 400 500

-4

-2

0

2

Output signal: 1 RMSE: 0.246342

Compare the result with those of the techniques for handling the bias-variance tradeoff, which were demon-
strated in the preceding example.

Compare the simulation with the true output on the validation data.

In[18]:= NetComparePlot@uv, yv, model2D
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Output signal: 1 RMSE: 0.419559

You can go back and repeat the example, changing the size of the model. Notice that the result will change
also if you do not change the network model, due to the randomness in the initialization.

The parameter-fixing feature can be used to incorporate prior knowledge in the network model. In this way
a model with fewer parameters can be obtained, which performs well from a bias-variance perspective.
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8.3 Further Reading

System identification and time series prediction are broad and diverse fields. This list is a small sampling of
the vast literature available on these topics.

The following books are good introductions:

R. Johansson, System Modeling and Identification, Englewood Cliffs, NJ, Prentice Hall, 1993.

L. Ljung and T. Glad, Modeling of Dynamic Systems, Englewood Cliffs, NJ, Prentice Hall, 1994.

The following books are more thorough and they are used in graduate courses at many universities:

L. Ljung, System Identification: Theory for the User, 2nd ed., Englewood Cliffs, NJ, Prentice Hall, 1999.

T. Söderström and P. Stoica, System Identification, Englewood Cliffs, NJ, Prentice Hall, 1989.

The  following  article  discusses  possibilities  and  problems  using  nonlinear  identification  methods  from  a
user’s perspective:

J.  Sjöberg et  al.,  “Non-Linear Black-Box Modeling in System Identification: A Unified Overview”, Automat-
ica, 31 (12), 1995, pp. 1691–1724.

This book is a standard reference:

G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, Oakland, CA, Holden-Day, 1976.

Many modern approaches to time series prediction can be found in this book and in the references therein:

A.  S.  Weigend and N. A.  Gershenfeld,  “Time Series  Prediction:  Forecasting the Future and Understanding
the Past”, in Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis held in
Santa Fe, New Mexico, May 14–17, 1992, Reading, MA, Addison-Wesley, 1994.

Standard books on neural networks might also be of some interest. The following are examples:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.
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9 Hopfield Networks

Hopfield  networks,  or  associative  networks,  are  typically  used  for  classification.  Given  a  distorted  input
vector, the Hopfield network associates it with an undistorted pattern stored in the network.

A  short  tutorial  about  Hopfield  networks  is  given  in  Section  2.7,  Hopfield  Network.  Section  9.1,  Hopfield
Network  Functions  and  Options,  defines  the  commands  and  the  options.  Section  9.2,  Examples,  contains
demonstration examples illustrating the commands.

9.1 Hopfield Network Functions and Options

This section introduces the commands you need to train and use Hopfield networks. Examples can be found
in Section 9.2, Examples.

9.1.1 HopfieldFit

Hopfield networks are defined with the function HopfieldFit.

HopfieldFit@x, optsD uses the data vectors x to create a discrete- or
continuous-time Hopfield network depending on the options

Training a Hopfield network.

HopfieldFit  returns  an  object  with  head  Hopfield.  The  information  of  the  network  is  stored  in  the
systematic  way used  by  all  neural  networks  of  the  package,  as  described  in  Section  3.2,  Package  Conven-
tions.  The  first  component  is  the  matrix  that  contains  the  parametric  weights,  as  described  in  Section  2.7,
Hopfield Network. 

HopfieldFit takes the following options.



options default values

NetType Discrete indicates the discrete- or
continuous-time Hopfield model

Neuron SaturatedLinear type of neuron for
continuous-time Hopfield models

WorkingPrecision 4 indicates the precision of the solution
of a continuous-time Hopfield network

Options of HopfieldFit.

The  option  NetType  takes  the  value  Discrete  or  Continuous,  indicating  which  type  of  Hopfield  net-
work you want to create. Continuous-time Hopfield networks can have two types of neurons, Saturatedg
Linear or Tanh. You use the option Neuron to indicate your preference. The option WorkingPrecision
indicates  the  precision,  the  number  of  decimals,  with  which  the  differential  Equation  2.28  in  Section  2.7,
Hopfield Network, should be solved for continuous-time Hopfield networks.

A continuous-time Hopfield network stores a few more information items than its discrete-time counterpart.
The  type  of  nonlinear  activation  function,  Neuron,  WorkingPrecision,  and  the  step  size,  Dt,  for  the
differential equation must be logged.

The network can be evaluated for the disturbed data vectors using the evaluation rule for Hopfield objects.
This means that the equation describing the network, as given in Section 2.7, Hopfield Network, is simulated
using the disturbed data vector as an initial state. 

net@xD evaluates net on the input vector x

Function evaluation of a Hopfield network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
on each row.

The evaluation rule  for  Hopfield  networks has the option Trajectories.  By  setting this  option to True,
you obtain not only the final values of the state vectors, but also the trajectories of the states starting at the
initial values, supported in the call, and finishing at the final values.
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option default value

Trajectories False indicates if the state trajectories should
be returned or only the final state values

Option of the evaluation rule for Hopfield networks.

9.1.2 NetInformation

Some information about a Hopfield network is provided when the command NetInformation is applied.

NetInformation@hopD gives information about a Hopfield network

The NetInformation function.

9.1.3 HopfieldEnergy

The  energy  of  a  Hopfield  network,  at  any  value  of  the  state  vector,  is  given  by  HopfieldEnergy.  The
mathematical definition of the energy is provided in Section 2.7, Hopfield Network. 

HopfieldEnergy@hop, xD computes the energy level for the given
Hopfield network hop at the indicated state vector x

Computing the energy of a state of a Hopfield network.

HopfieldEnergy has no options.

9.1.4 NetPlot

A  Hopfield  network  can  be  evaluated  directly  on  a  data  vector  by  applying the  evaluation rule  as  shown
earlier. The command NetPlot can also be used, and it gives some more information about the evaluation.
It works in the following way.

NetPlot@hop, x, optsD plots the convergence path of a Hopfield network; presents
the result in various ways by choosing different options

Illustrate Hopfield networks.
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NetPlot takes the following options when it is applied to a Hopfield network.

option name default value

DataFormat Trajectories indicates how the
classification result is illustrated

Compiled True use compiled version

Option of NetPlot.

NetPlot simulates the Hopfield network, as described in Section 2.7, Hopfield Network, using the supplied
disturbed  data  vector  x  as  an  initial  state.  By  giving  different  values  to  the  option  DataFormat  you  can
obtain the result, which may be presented in different ways.

The default DataFormat→Trajectories  gives a plot of the components of the state vector as a function
of time. In addition to DataFormat, NetPlot also passes on any other options to its plot commands so that
you can modify the plots.

Possible values for DataFormat include the following.

Trajectories plots the components of
the state vectors as a function of time

Energy plots the energy decrease as a function of time

ParametricPlot an option only possible for two-dimensional problems;
gives a parametric plot of the states
together with a contour plot of the energy

Surface an option only possible for continuous-time Hopfield
nets in two dimensions; gives a parametric plot
of the states together with a 3 D plot of the energy

Possible values of DataFormat.

As  described  in  Section  2.7,  Hopfield  Network,  the  convergence  points  of  a  Hopfield  network  are  always
local energy minima. That is why the energy is strictly decreasing.
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For  a  continuous-time,  two-dimensional  Hopfield  network,  you  can  also  get  the  energy  surface  together
with the state trajectories by choosing the option Surface.

9.2 Examples

In  this  subsection,  Hopfield  networks  are  used  to  solve some simple classification problems.  The first  two
examples illustrate the use of discrete-time Hopfield models, and the last two examples illustrate the continu-
ous-time version on the same data sets.

9.2.1 Discrete-Time Two-Dimensional Example

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

In this small example there are two pattern vectors 81, -1< and 8-1, 1<. Since the vectors are two-dimensional
you can display the results to illustrate the outcome.

 Generate and look at class vectors.

In[2]:= x={{1,-1},{-1,1}};
NetClassificationPlot[x]
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The two pattern vectors are placed in the corners of the plot. The idea is now that disturbed versions of the
two pattern vectors should be classified to the correct undisturbed pattern vector.
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Define a discrete-time Hopfield network.

In[4]:= hop = HopfieldFit[x]

Out[4]= Hopfield@W, 8NetType → Discrete, CreationDate → 82002, 4, 3, 14, 9, 1<<D
Because the discrete Hopfield network is the default type, you do not have to specify that you want this type.

Some descriptive information is obtained by using NetInformation.

In[5]:= NetInformation@hopD
Out[5]= Discrete Hopfield model for pattern vectors with 2

components. Created 2002−4−3 at 14:09. Type of neuron: Sign@xD.
A new data pattern may be classified by processing it with the obtained model.

Evaluate the network for some disturbed data vectors.

In[6]:= hop[{0.4,-0.6}]

Out[6]= 881, −1<<
More  information about  the  evaluation of  the  Hopfield  network  on data vectors  can be  obtained by using
NetPlot. The default is to plot the state trajectories as a function of time.

Plot the state vectors versus time.

In[7]:= NetPlot[hop, {{0.4, -0.6}}]
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It  might  be  interesting  to  obtain  the  trajectories  for  further  manipulation.  They  can  be  obtained  using  the
evaluation rule  with  the  option  Trajectories→True.  Then  the  trajectories  are  returned  instead  of  only
the final value, which is the default.

Obtain the state trajectory.

In[8]:= hop@880.4, −0.6<<, Trajectories → TrueD
Out[8]= 8880.4, −0.6<, 81, −0.6<, 81, −1<<<
The  trajectory  is  the  numerical  solution  to  Equation 2.26  describing the  network;  see  Section  2.7,  Hopfield
Network.

NetPlot can also be used for several patterns simultaneously.

Evaluate two data vectors simultaneously.

In[9]:= res = NetPlot[hop, {{0.4, -0.6}, {0.6, 0.7}}]
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By giving the option DataFormat→Energy, you obtain the energy decrease from the initial point, the data
vector, to the convergence point as a function of the time.
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Look at the energy decrease.

In[10]:= res = NetPlot[hop, {{0.4, -0.6}, {0.6, 0.7}},DataFormat→Energy]
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Try 30 data pattern vectors at the same time. To avoid 30 trajectory and energy plots, you can instead choose
the option DataFormat→ParametricPlot.  You can use the command RandomArray  from the standard
add-on package Statistics`ContinuousDistributions` to generate random vectors.

Plot a contour plot with state vector trajectories.

In[11]:= << Statistics`ContinuousDistributions`
x = RandomArray[UniformDistribution[-1, 1],  {10, 2}]; 
NetPlot[hop,x,DataFormat→ParametricPlot,PlotRange→{-1.2,1.2}]
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All trajectories converge to 8-1, 1< or 81, -1<, which are the two pattern vectors used to define the Hopfield
network with HopfieldFit.

9.2.2 Discrete-Time Classification of Letters

In this example, some letters will be automatically classified.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Generate  patterns  of  the  letters  A,  I,  and  Y.  They  are  stored  as  matrices  with  1  indicating  black  and  -1
indicating white.

Generate the letters A, Y, and I in a list x.

In[2]:= x=-{{{1,-1,1},{1,1,1},{1,-1,1},{1,1,1}},
{{-1,1,-1},{-1,1,-1},{-1,1,-1},{-1,1,-1}},
{{-1,1,-1},{-1,1,-1},{1,-1,1},{1,-1,1}}};

Look at the letters.

In[3]:= xg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None]&,x];
Show[GraphicsArray[xg]]

Before you can construct a Hopfield network, the matrices have to be transformed into vectors.

Transform the matrices into pattern vectors.

In[5]:= xv = Map[Flatten,x,{1}];

The vectors containing the input pattern representing the three letters can now be used to create a Hopfield
network.
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Create a Hopfield network.

In[6]:= hopletter = HopfieldFit[xv]

Out[6]= Hopfield@W, 8NetType → Discrete, CreationDate → 82002, 4, 3, 14, 10, 31<<D
The  obtained  Hopfield  network  can  be  tested  in  different  ways.  Start  by  determining  if  it  can  correctly
classify noisy versions of the three letters. Noisy versions are generated when each pixel has a certain proba-
bility to change value. Since this is a random process you will receive different disturbed data vectors each
time you repeat the following commands.

Create three disturbed data vectors from the three pattern vectors.

In[7]:= <<Statistics`ContinuousDistributions`
y=Sign[xv*RandomArray[UniformDistribution[-0.1,1], {3,12}]];

You can look at the disturbed data vectors, but first they must be converted to matrices.

Look at the disturbed letters.

In[9]:= ym=Map[Partition[#,3] &, y];
yg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None] &,ym];
Show[GraphicsArray[yg]]

It is now time to evaluate the Hopfield network against the disturbed data vectors. This is done by mapping
the Hopfield object containing the Hopfield network on each of the data vectors describing the noisy letters.
The result is converted back into matrices and plotted.
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Evaluate the Hopfield network on the noisy letters and plot the result.

In[12]:= yh=Map[hopletter[#] &, y];
yh=Apply[Partition[#,3] &, yh, 1];
yhg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None] &, yh];
Show[GraphicsArray[yhg]]

Is the result satisfactory? You can test other noisy letters by repeating the commands.

With NetPlot you can plot the energy decrease and the trajectories xHtL.
Look at the energy decrease during the evaluation.

In[16]:= NetPlot[hopletter,y,DataFormat→Energy]
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From the plot you can see that the Hopfield network converged after three discrete-time steps.

Look at the state vectors starting at the noisy letters.

In[17]:= NetPlot[hopletter,y]
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You can also try the Hopfield networks on some randomly generated patterns. 

Generate and look at random patterns.

In[18]:= letterRand=Sign[RandomArray[UniformDistribution[-1,1], {4, 12}]]; 
letterRandMatrix=Map[Partition[#,3] &,letterRand, 1]; 
lg = Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None] 
&,letterRandMatrix]; 
Show[GraphicsArray[lg]]

Apply the network to each of these patterns and look at the patterns to which they converge.

In[22]:= lh=Map[hopletter[#] &, letterRand];
lh=Apply[Partition[#, 3] &, lh, 1];
lhg=Map[ListDensityPlot[#, DisplayFunction→Identity,FrameTicks→None] &, lh];
Show[GraphicsArray[lhg]]

You can show that  the  mirror  vectors  to  the pattern  vectors  also constitute minima to  the energy  function
and,  therefore,  the  mirror  vectors  are  also  possible  convergence  points  of  the  Hopfield  network.  It  is  not
uncommon for  some of  the  randomly generated  data vectors  to  converge  to  these  inverses  of  some of  the
original letters.

9.2.3 Continuous-Time Two-Dimensional Example

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`
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Consider  the  same  two-dimensional  example  as  for  the  discrete-time  Hopfield  network.  There  are  two
pattern vectors  81, -1<  and 8-1, 1<,  and the  goal  is  to  classify  noisy versions  of  these  vectors  to  the  correct
vector.

Generate and look at class pattern vectors.

In[2]:= x={{1,-1},{-1,1}};
NetClassificationPlot[x]
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The two pattern vectors are placed in the corners of the plot. 

Define a continuous-time Hopfield network with a saturated linear neuron.

Create a continuous-time Hopfield network.

In[4]:= hop=HopfieldFit[x,NetType→Continuous,Neuron→SaturatedLinear]

Out[4]= Hopfield@W, 8NetType → Continuous, WorkingPrecision → 4,
CreationDate → 82002, 4, 3, 14, 11, 31<, Dt → 0.2, Neuron → SaturatedLinear<D

Provide some information about the Hopfield network.

In[5]:= NetInformation@hopD
Out[5]= Continuous Hopfield model for pattern vectors with 2 components. Created 2002−4−3

at 14:11. Type of neuron: SaturatedLinear@xD. Precision in evaluation: 4

The obtained network can be used right away on any data vector by using the evaluation rule for Hopfield
objects.
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Evaluate the Hopfield network on a data vector.

In[6]:= hop[{0.4,-0.6}]

Out[6]= 880.99962, −0.999746<<
Using NetPlot you can plot various information, for example, the state trajectories.

Plot the state trajectories.

In[7]:= NetPlot[hop,{{0.4, -0.6}}]
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It might be interesting to obtain the state trajectories of the evaluation of the Hopfield network on the data
vectors.  This  can  be  done  by  setting  the  option  Trajectories→True  in  the  evaluation  of  the  Hopfield
network.

Obtain the state trajectory.

In[8]:= hop@880.99, −0.99<<, Trajectories → TrueD
Out[8]= 8880.99, −0.99<, 80.992, −0.992<, 80.9936, −0.9936<, 80.99488, −0.99488<,80.995904, −0.995904<, 80.996723, −0.996723<, 80.997379, −0.997379<,80.997903, −0.997903<, 80.998322, −0.998322<, 80.998658, −0.998658<,80.998926, −0.998926<, 80.999141, −0.999141<, 80.999313, −0.999313<,80.99945, −0.99945<, 80.99956, −0.99956<, 80.999648, −0.999648<<<
The  trajectory is  the  numerical  solution to  Equation 2.28 describing the  network (see  Section  2.7,  Hopfield
Network), computed with a time step given by the variable Dt in the Hopfield object. It  was automatically
chosen, when HopfieldFit was applied, to ensure a correct solution of the differential equation.

246 Neural Networks



The energy surface and the trajectories of the data vectors can provide a vivid illustration of the classifica-
tion process. This is only possible for two-dimensional, continuous-time Hopfield nets.

Plot the energy surface together with the trajectories of several data vectors.

In[9]:= << Statistics`ContinuousDistributions`
x = RandomArray[UniformDistribution[-1, 1],  {30, 2}]; 
NetPlot[hop,x,DataFormat→Surface]

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

-6

-4

-2

0

-1

-0.5

0

0.5

9.2.4 Continuous-Time Classification of Letters

Consider classification of the same letters as in the example used with the discrete-time Hopfield network.

Read in the Neural Networks package.

In[1]:= <<NeuralNetworks`

A continuous-time Hopfield  network will  now be used to classify noisy patterns of  the letters  A,  I,  and Y.
First combine the three letters as three matrices in a list.

Generate three matrices containing the letters A, Y, and I.

In[2]:= x=-{{{1,-1,1},{1,1,1},{1,-1,1},{1,1,1}},
{{-1,1,-1},{-1,1,-1},{-1,1,-1},{-1,1,-1}},
{{-1,1,-1},{-1,1,-1},{1,-1,1},{1,-1,1}}};
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Each matrix element contains the gray level of one pixel. The value 1 corresponds to entirely black and -1 to
entirely white.

Look at the letters.

In[3]:= xg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None]&,x];
Show[GraphicsArray[xg]]

Before you can construct a Hopfield network, the matrices have to be transformed into vectors.

Transform the matrices to pattern vectors.

In[5]:= xv = Map@Flatten, x, 81<D;
The network is obtained with HopfieldFit.

Obtain a continuous-time Hopfield network.

In[6]:= hopletter = HopfieldFit@xv, NetType → Continuous, Neuron → SaturatedLinearD
Out[6]= Hopfield@W, 8NetType → Continuous,

WorkingPrecision → 4, CreationDate → 82002, 4, 3, 14, 12, 39<,
Dt → 0.047619, Neuron → SaturatedLinear<D

To test  if  the  network  can  correct  noisy  data  vectors,  some noisy versions  of  the  three  pattern  vectors  are
created.  If  everything  works  out  the  way it  ought  to,  then these  three  noisy data vectors  will  be  classified
correctly.

Create three distorted letters from the three given ones.

In[7]:= <<Statistics`ContinuousDistributions`
y=xv*RandomArray[UniformDistribution[-0.3,1], {3,12}];
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The disturbed letters take real values in the interval 8-1, 1<.  To look at the disturbed letters, they must first
be retransformed into matrices. 

Look at the disturbed letters.

In[9]:= ym=Map[Partition[#,3] &, y];
yg=Map[ListDensityPlot[#, DisplayFunction→Identity,FrameTicks→None] &, ym];
Show[GraphicsArray[yg]]

The Hopfield network will now be used to “repair” the noisy patterns. The result is transformed into matri-
ces and plotted.

Apply the Hopfield network to the noisy data vectors and plot the result.

In[12]:= yh=Map[hopletter[#] &, y];
yh=Apply[Partition[#, 3] &, yh, 1];
yhg=Map[ListDensityPlot[#, DisplayFunction→Identity,FrameTicks→None] &, yh];
Show[GraphicsArray[yhg]]

Was the  result  satisfactory? Because  the  noisy data vectors  were  generated randomly,  the  result  may vary
from time to time. Repeat the calculations a couple of times with different noisy letters to see the differences.

You can also use NetPlot to illustrate the evaluation on the noisy data vectors.
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Check how the trajectories develop with time.

In[16]:= NetPlot@hopletter, yD
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Check how the energy decreases with time.

In[17]:= NetPlot@hopletter, y, DataFormat → Energy, Ticks → 8Automatic, 8−60, −100, −140<<D
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You can also see how the Hopfield network deals with some randomly generated patterns. 

Generate and look at random patterns.

In[18]:= letterRand = RandomArray@UniformDistribution@−1, 1D, 84, 12<D;
letterRandMatrix = Map@Partition@#, 3D &, letterRand, 1D;
lg = Map@ListDensityPlot@#, DisplayFunction → Identity, FrameTicks → NoneD &,

letterRandMatrixD;
Show@GraphicsArray@lgDD

Do  any  of  these  random patterns  look  like  any  of  the  three  letters?  What  does  the  Hopfield  network  say
about them? To which energy minima are these random patterns attracted?
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Apply the network to the random patterns and look at the result.

In[22]:= lh=Map[hopletter[#] &, letterRand];
lh=Apply[Partition[#, 3] &, lh, 1];
lhg=Map[ListDensityPlot[#, DisplayFunction →Identity,FrameTicks→None]&, lh];
Show[GraphicsArray[lhg]]

Have  the  randomly  generated  patterns  been  classified  as  any  of  the  letters?  If  so,  do  these  results  make
sense; that is, do the original random patterns resemble these letters? As mentioned previously, it is possible
at times to get the inverted versions of the letters. They are also attractors of the Hopfield network; that is,
their  inversions  are  also  possible  convergence  points  of  the  network.  This  is  an  unfortunate  feature  of
Hopfield networks.

9.3 Further Reading

The following texts cover Hopfield networks:

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

J.  J.  Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities”,
in Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 2554–2558.

J.  J.  Hopfield,  “Neurons  with  Graded  Response  Have  Collective  Computational  Properties  Like  Those  of
Two-State Neurons”, in Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 3088–3092.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.
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10 Unsupervised Networks

Unsupervised  neural  networks  employ  training  algorithms  that  do  not  make  use  of  desired  output  data.
They  are  used  to  find  structures  in  the  data,  such  as  clusters  of  data  points  or  one-  or  two-dimensional
relationships among the data. When such structures are discovered, they can help describe the data in more
compact ways. 

A  short  tutorial  on  unsupervised  networks  is  given  in  Section  2.8,  Unsupervised  and Vector  Quantization
Networks.  Section  10.1,  Unsupervised  Network  Functions  and  Options,  describes  the  functions  and  their
options  to  work  with  unsupervised  networks.  Examples  of  the  use  of  the  commands are  given  in  Section
10.2,  Examples  without  Self-Organizing  Maps,  and  Section  10.3,  Examples  with  Self-Organizing  Maps.
Section  10.4,  Change  Step  Length  and  Neighbor  Influence,  describes  how  you  can  change  the  training
algorithm by changing the step length and the neighbor feature.

10.1 Unsupervised Network Functions and Options

This  section  introduces  the  commands  to  deal  with  unsupervised  networks,  with  and without  a  neighbor
map.  Examples  illustrating  the  use  of  the  commands  follows  in  Section  10.2,  Examples  without  Self-
Organizing Maps, and Section 10.3, Examples with Self-Organizing Maps.

10.1.1 InitializeUnsupervisedNet

An unsupervised network is initialized with InitializeUnsupervisedNet.

InitializeUnsupervisedNet@x, sizeD
initializes an unsupervised network of
the indicated size using supplied data vectors x

Initialize an unsupervised network.

The argument size should be a positive integer indicating the number of codebook vectors; the supplied data
x should be a matrix as described in Section 3.2, Package Conventions.



Unsupervised  networks  are  stored  in  objects  with  head  UnsupervisedNet,  on  a  format  following  the
general standard of the package, as described in Section 3.2, Package Conventions. The first component is a
list of the codebook vectors. 

You may write your own initialization or training algorithm. In that case, Section 13.1, Change the Parameter
Values  of  an  Existing  Network,  describes  how  you  insert  the  parameter  values  into  an  unsupervised
network.

The  options  of  InitializeUnsupervisedNet  are  divided  into  two  groups.  The  first  group defines  the
structure of the network, which could include a neighbor map when a SOM is desired. The second group of
options influences the way the network is actually initialized.

The following options define the structure of the unsupervised network. 

option default value

SOM None specifies the neighbor map if
changed to a list containing two integers

Connect False connects the neighbor map into a
ring if set to False or a cylinder if True

Options of InitializeUnsupervisedNet defining the structure of the unsupervised network.

If you want a neighbor map, you set the option SOM  to a list of two integers. These two integers define the
geometry of the neighbor map, and their product must equal the number of codebook vectors. A one-dimen-
sional SOM is obtained by setting one of the integers to 1 and the second to the number of codebook vectors.

The second group of options influences the initialization procedure of the unsupervised network. They can
be  used  in  calls  to  InitializeUnsupervisedNet  and  also  to  UnsupervisedNetFit  if  no  existing
network is submitted. If the option UseSOM is set to True, then a SOM will be used for the initialization, and
most  of  the  options  are  only  active  in  this  case.  Some  of  the  options  are  more  advanced,  and  they  are
explained further in the examples in Section 10.4, Change Step Length and Neighbor Influence.
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option default value

UseSOM False random initialization of the un-
supervised net; if set to True,
a SOM is used in the initialization

Compiled True applies the initial
SOM training compiled

Iterations 10 number of iterations with the SOM

InitialRange 0.01 standard deviation of the normally
distributed initial codebook vectors,
normalized by the range
of the data vectors

Recursive False applies the initial
SOM training in batch mode

StepLength Automatic step-length function for
the initialization algorithm

NeighborStrength Automatic positive value, or function,
indicating the neighbor
strength for the SOM algorithm

Neighbor NonSymmetric neighbor topology
for the SOM algorithm

CriterionPlot False gives no plot presenting the result of
the training with the SOM algorithm

CriterionLog False logs no information about the
training with the SOM algorithm

CriterionLogExtN True if the CriterionLog
option is set to True,
then presents the training
log in a separate notebook

ReportFrequency 1 if the CriterionLog
option is set to True,
then logs the performance with
this interval during the training

MoreTrainingPrompt False prompts for more training
iterations if set to True
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Options of InitializeUnsupervisedNet defining the initialization of the network.

The default  initialization of  unsupervised networks is  to  place  the  codebook vectors  randomly around the
mean of the data vectors. Then, InitialRange is the only option that influences the initialization.

The  other  possibility  is  to  set  UseSOM→True,  and  then  apply  a  few  training  iterations  with  a  neighbor
feature.  The  risk  that  some  of  the  codebook  vectors  might  “die”—that  is,  they  might  not  be  used  by  the
data—decreases by using this initialization. All options, except InitialRange, influence the initial training
with the neighbor feature,  and therefore,  they only influence the initialization if  they are used in combina-
tion with UseSOM→True.

The default of the options StepLength and NeighborStrength are the following two functions:

   è StepLength: Function[If[# < 3, 0.1, 0.5]]

   è NeighborStrength: Function[If[# < 3, 0.1, (2*#)/10.] ]

You can change these default values as described later in this section.

10.1.2 UnsupervisedNetFit 

Unsupervised  networks  are  trained  with  UnsupervisedNetFit.  You  can  choose  between  submitting  an
already existing unsupervised model,  or have a new network initialized by indicating the number of code-
book  vectors.  You  can  also  indicate  the  number  of  training  iterations.  If  left  out,  the  default  number  of
iterations (30) will be applied.

UnsupervisedNetFit@x, sizeD initializes and trains an unsupervised net of
indicated size the default number of iterations

UnsupervisedNetFit@x, size, iterationsD initializes and trains an unsupervised net of
indicated size the specified number of iterations

UnsupervisedNetFit@x, netD trains the supplied unsupervised
net the default number of iterations

UnsupervisedNetFit@x, net, iterationsD trains the supplied unsupervised
net the specified number of iterations

Training an unsupervised network.

An existing network can be submitted for  more training by setting net  equal  to the network or its  training
record.  The  advantage  of  submitting  the  training  record  is  that  the  information  about  the  first  training  is
combined with the additional training.
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UnsupervisedNetFit returns a list of two variables. The first output is the trained unsupervised network.
It  consists  of  an  object  with  head  UnsupervisedNet.  The  second  output,  the  training  record  with  head
UnsupervisedNetRecord,  contains logged information about the  training.  It  can be  used to  analyze the
progress  of  the  training,  and  to  validate  the  model  using  the  command  NetPlot.  You  can  also  extract
intermediate information from the training as described in Section 7.8, The Training Record.

During the  training,  intermediate  results  are  displayed in  a  separate  notebook,  which is  created  automati-
cally.  After  each  training  iteration  the  mean  distance  between  the  data  vectors  and  the  closest  codebook
vector  is  written  out.  Using  the  options  of  UnsupervisedNetFit,  as  described  in  Section  7.7,  Options
Controlling Training Results Presentation, you can change the way the training results are presented.

The necessary number of training iterations is strongly dependent on the particular problem. Depending on
the number of  data vectors,  their  distribution, and the number of  codebook vectors,  you might need more
iterations. At the end of the training, the decrease of the mean distance is shown in a plot. You can use this
plot to decide if more training iterations are necessary. 

Sometimes you also receive  a warning at the end of  the training saying that there is at  least one codebook
vector that is not used by the data. This indicates that there are nuisance codebook vectors, or dead neurons,
that do not have any effect on the training data. In general you do not want any dead codebook vectors, and
there are various measures you can take. For example, you can

   è  Re-initialize the unsupervised network using the option UseSOM→True. This usually gives a better 
initialization as described later.

   è  Repeat the training from a different initialization. The initialization and training contain some ran-
domness and by repeating these commands you obtain a new realization that might be better.

   è  Change the size of the unsupervised network by changing the number of codebook vectors in the 
initialization.

   è  Identify the unused codebook vectors with UnUsedNeurons and remove them using NeuronDelete.

UnsupervisedNetFit  takes  basically  the  same  options  as  InitializeUnsupervisedNet,  but  the
default values are different. 
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option default value

SOM None specifies the neighbor map if
changed to a list containing two integers

Connect False connects the neighbor map into
a ring if False or a cylinder if True

Compiled True uses compiled code

Recursive True trains in recursive mode

StepLength Automatic step-length function for the training algorithm

NeighborStrength Automatic positive value, or function,
indicating neighbor strength

Neighbor NonSymmetric neighbor topology

CriterionPlot True plots the result of the training

CriterionLog True logs information about the training

CriterionLogExtN True presents the training log in a separate notebook

ReportFrequency 1 logs the performance with
this interval during the training

MoreTrainingPrompt False prompts for more
training iterations if set to True

Options of UnsupervisedNetFit.

The  options  CriterionPlot,  CriterionLog,  CriterionLogExtN,  ReportFrequency,  and  Moreg
TrainingPrompt  are  common in  the  other  training commands in  the  Neural  Networks  package,  and they
are described in Section 7.7, Options Controlling Training Results Presentation.

By  giving new values  to  SOM  and Connect  in  the  call  to  UnsupervisedFit,  it  is  possible  to  change the
neighbor map of  an existing unsupervised network. Examples of  how this is done can be found in Section
10.3.3, Adding a SOM to an Existing Unsupervised Network.

The options NeighborStrength and Neighbor only influence the algorithm if the unsupervised network
has a neighbor map attached to it. Examples illustrating these options are given in Section 10.4, Change Step
Length and Neighbor Influence.
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The  options  Recursive,  StepLength,  NeighborStrength,  and  Neighbor  are  used  to  modify  the
training algorithm. They are of a more advanced nature and are further described in this section.

An unsupervised network can be evaluated on one data vector,  or a list of data vectors,  using the function
evaluation rule. The output is a list containing the number of the codebook vector closest to the data vector.
This evaluation rule is actually all you need to start using the unsupervised network.

net@xD evaluates the net on the input vector x

Function evaluation of an unsupervised network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
in each row.

The function evaluation rule also has an option.

option default value

SOM Automatic indicates whether the output should be the number of the
winning neuron or its coordinates within the SOM map

Option of the evaluation of an unsupervised network.

The  default  Automatic  is  changed  to  True  or  False  depending  on  whether  or  not  the  unsupervised
network has a  SOM  feature.  If  it  does,  then the  default  gives  the  position of  the winning codebook vector
within the  SOM  structure.  If  you supply  the  option SOM→False,  then  the  SOM  feature  is  not  used  in  the
evaluation, and you receive the number of the winning codebook vector. This is illustrated in Section 10.3.1,
Mapping from Two to One Dimensions.

Details and Algorithms

Further described are more advanced options for UnsupervisedNetFit.  They can be used to modify the
training algorithm from the default version in a way that might better suit your problem.

The  codebook  vectors  can  either  be  adapted  in  a  recursive  manner,  considering  one  data  sample  in  each
update, or in batch mode where all  data is  used at each step.  The algorithm to be used is  indicated by the
Recursive option. Also, the algorithm will vary depending on whether or not a neighbor feature is applied.
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The recursive algorithm for unsupervised networks (Standard competitive learning rule):

Given N data vectors 8xk<, k = 1, ..., N, in each update, the following steps are performed.

  1.  k is chosen randomly from a uniform integer distribution between 1 and N, where the whole range is 
considered each time this step is executed.

  2.  The codebook vector closest to xk, called the winning neuron or the winning codebook vector, is identi-
fied. Its index is indicated by i.

  3.  The winning codebook vector is changed according to

(1)wi = wi + SL@nD ∗ Hxk − wiL
    where n is the iteration number.

  4.  The described steps are repeated N times in each iteration.

Abbreviations have been used; SL@nD is the StepLength function, and it can be changed by the option with
the same name.

If the unsupervised network contains a neighbor feature, then the following recursive algorithm applies.

The recursive algorithm for SOM (Kohonen’s algorithm):

 Given N data vectors 8xk<, k = 1, ... N, in each update, the following steps are performed.

  1.  k is chosen randomly from a uniform integer distribution between 1 and N, where the whole range is 
considered each time this step is executed.

  2.  The codebook vector closest to xk, called the winning neuron or the winning codebook vector, is 
identified. Its index is indicated by 8iwin, jwin<.

  3.  All the codebook vectors are changed according to

(2)
wi,j = wi,j +

SL@nD ∗ Exp@−NS@nD ∗ NM@@c1 − iwin + i, c2 − jwin + jDDD ∗ Hxk − wi,jL
      where n is the iteration number and 8c1, c2< is the center position of the neighbor matrix, the value 

given with the SOM option.

  4.  The described steps are repeated N times in each iteration.
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Abbreviations  have  been  used;  SL@nD  is  the  StepLength  function  and  NS@nD  is  the  NeighborStrength
function. They can both be changed by the options with the same names. NM is the neighbor matrix dictat-
ing which codebook vectors are neighbors, and it can also be chosen by the user.  All codebook vectors are
changed toward the  data  vector.  The  neighbor  matrix  NM  should  have  its  minimum at  its  center  element8c1, c2<, so that the winning neuron update is most pronounced. Typically, the elements of NM further away
from the center take larger values, so that codebook vectors further away from the winner are changed less.
One  iteration  of  the  stochastic  algorithm  (that  is,  n  incremented  by  1),  consists  of  N  updates  via  Equation
10.2. Note that due to the fact that k is chosen independently in each update, the data use is indeterminate.

With  Recursive→False  all  data  is  used  in  each  iteration.  The  training  follows  a  deterministic  scheme
where the mean of the update Equation 10.1, or  Equation 10.2, over all data 8xk<, k = 1, ..., N is used. In this
case,  the  unsupervised training without a  neighbor feature becomes equivalent to what is  called a  k-means
clustering.

The  intended  use  of  UnsupervisedNetFit  is  to  employ  the  recursive  algorithm at  the  beginning of  the
training,  and  then,  possibly,  take  a  few  steps  with  the  batch  algorithm  to  fine  tune  the  neurons.  When
UnsupervisedNetFit  is used in other ways you should consider changing the two options StepLength
and NeighborStrength.

The StepLength option:

The  StepLength  option  has  the  default  value  Automatic.  Depending  on  the  value  of  the  Recursive
option, this is changed into one out of two different functions.

Recursive → True: Function[n, If[n<5, 0.01, 2./(3+n)]]

Recursive → False: Function[n, 1]

In the recursive case,  the step length is small during the first  iterations so that the codebook vectors find a
good orientation. Then, the step length is increased to speed up the convergence. From this higher value, the
step length is then slowly decreased again. Convergence can only be guaranteed if the step length converges
toward zero.

For  a  batch  update,  the  step  length  is  set  to  one  for  all  iterations.  This  is  a  good  choice  if  the  codebook
vectors are close to their optimal values, so that the step becomes small anyway. The equation may become
unstable if such a large step length is used when this is not the case.

You can choose other step lengths in two different ways. A constant step length is obtained by giving Stepg
Length a numerical value in the range 80, 1<. The other possibility is to set the option to a function that takes
the iteration number as input and delivers a numerical value as output. In Section 10.4, Change Step Length
and Neighbor Influence, you find an example showing how the step length may be changed.
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The NeighborStrength option:

The NeighborStrength option works similarly to StepLength, but it is active only if there is a neighbor
feature  adapted to  the  network.  Depending on the Recursive  option the  default  Automatic  is  changed
into: 

Recursive → True: Function[n, If[n<5, 0.1, (n-4)/10.] ];

Recursive → False: Function[n, 1000.]

In  the  recursive  case,  during  the  first  five  iterations,  the  neighbors  of  the  winning  neuron  are  influenced
strongly  Hlow value > 0L.  This  helps  the  network  to  conform  to  a  nice  structure  and  avoid  “knots.”  Subse-
quently, the influence on the neighbors gradually decreases (value increases).

When the algorithm is applied in batch mode, the neighbor strength function has a constant value of 1000,
which imparts  only a  negligible  influence on the neighboring codebook vectors.  Therefore,  in batch mode,
only  the  winning  neurons  are  adapted.  This  is  good  when  the  batch  mode  is  used  to  fine-tune  the  final
positions of the codebook vectors, after the recursive training has been applied. 

A  positive  constant  neighbor  strength  can  be  specified  using  NeighborStrength.  You  can  also  use  any
function that takes the iteration number as input and gives the neighbor strength as output. In Section 10.4,
Change Step Length and Neighbor Influence, you find an example showing how the NeighborStrength
option can be changed.

The Neighbor option:

As  is  the  case  with  NeighborStrength,  the  Neighbor  option  also  has  no  meaning  unless  a  neighbor
feature is  attached to the unsupervised network. The Neighbor  option lets you specify which neurons, or
codebook vectors, are neighbors. There are two standard possibilities that are specified by setting the Neighg
bor option to NonSymmetric (default) or Symmetric. The nonsymmetric choice gives a stronger connec-
tion to the neighbors on one side than on the other side. This should make it easier to avoid “knots” on the
map. With these standard choices, neighbor matrices of the correct dimensions are computed internally. The
symmetric option gives a neighbor matrix i
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for a one-dimensional network with three codebook vectors. The zero is at the center position, and it corre-
sponds to the winning codebook vector. The matrix has larger values away from the center position in both
directions. Since the size of the matrix elements indicates the distance between the codebook vector and the
winning neuron, a larger value means that the distance is also larger. The nonsymmetric alternative givesi
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in a one-dimensional network with three codebook vectors. For a two-dimensional network of size 83, 4< you
obtain the following neighbor matrices with the nonsymmetric alternativei

k
jjjjjjjjjjjjjjjj
10 8 6 4 5 6 7
8 6 4 2 3 4 5
6 4 2 0 1 2 3
7 5 3 1 2 3 4
8 6 4 2 3 4 5

y
{
zzzzzzzzzzzzzzzz

and with the symmetric alternativei
k
jjjjjjjjjjjjjjjj
5 4 3 2 3 4 5
4 3 2 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 2 3 4
5 4 3 2 3 4 5

y
{
zzzzzzzzzzzzzzzz

You can use the Neighbor  option and submit your own neighbor matrix. It  should then have dimensions82 c1 - 1, 2 c2 - 1<,  where  8c1, c2<  are  the  dimensions  of  the  SOM  map.  In  Section  10.4,  Change  Step  Length
and Neighbor Influence, you will find an example showing how the Neighbor option can be changed.

The Connect option:

If Connect is changed to True, then the neighbor matrix is changed so that the SOM network is connected
to a ring in the one-dimensional case, and into a cylinder in the two-dimensional case (in the first of the two
dimensions). This holds only if you use one of the two values NonSymmetric or Symmetric for the Neighg
bor  option. If  you instead supply your own neighbor matrix, then the Connect  option does not have any
meaning, and you have to specify the neighbor matrix directly so that it corresponds to a ring. The neighbor
matrix  generated  by  setting  Connect→True  and  Neighbor→Symmetric  for  a  one-dimensional  SOM
network with six codebook vectors is
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The  element  values  indicate  the  distance  from  the  winning  neuron,  which  is  in  the  center,  that  is,  it  has
distance zero from itself.  The  codebook vectors  six positions away from the winner have distance one,  the
same as the codebook vector in the position next to the winner. Therefore, one end of the line is connected to
the other end.

10.1.3 NetInformation

Some  information  about  the  unsupervised  networks  is  presented  in  a  string  by  the  function
NetInformation.

NetInformation@unsupD gives information about an unsupervised net

The NetInformation function.

NetInformation takes no options.

10.1.4 UnsupervisedNetDistance, UnUsedNeurons, and NeuronDelete

The function UnsupervisedNetDistance  gives the average Euclidian distance between the data vectors
and the nearest codebook vector of the submitted unsupervised network.

UnsupervisedNetDistance@net, xD
gives the mean Euclidian distance
between data x and nearest codebook vector

Performance of an unsupervised network.
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A small value indicates that all  data vectors are close to a codebook vector,  and then the clustering can be
considered successful.

UnsupervisedNetDistance has one option.

option default value

Compiled True use compiled version

Option of UnsupervisedNetDistance.

The function UnUsedNeurons  indicates the codebook vectors that are not closest to any data vector. These
codebook  vectors  that  are  unused  on  the  training  data  set  can  be  considered  to  have  “died,”  and  do  not
contribute  to  the  clustering.  Instead,  they  can  be  considered  as  nuisance  vectors.  Therefore,  it  is  always
interesting to test which, if any, codebook vectors are not being used. You may use the command NeuronDeg
lete to remove these codebook vectors from the network.

UnUsedNeurons@net, xD gives the numbers of codebook vectors not used by the data x

Finding the unused codebook vectors.

The output is  a  list  containing the  numbers of  the codebook vectors  that are  not closest  to  any of  the sup-
plied data.

Sometimes  it  might  be  of  interest  to  remove  some of  the  codebook vectors  from an existing unsupervised
network, for example, the ones pointed out by UnUsedNeurons. NeuronDelete can be used to do this.

NeuronDelete@net, posD deletes the codebook vectors
indicated with pos in an existing network net

Deleting codebook vectors in an existing unsupervised network.

NeuronDelete has one option.

option default

DeleteSOM False removes the neighbor structure from the network

Option of NeuronDelete.
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The argument pos indicates the codebook vectors to be deleted. It is used differently depending on whether
the network has a SOM. 

If  there  is  no  SOM,  or  if  DeleteSOM→True,  then  pos  should  be  an  integer  indicating  the  number  of  the
codebook vector to be deleted. Several codebook vectors can be removed by supplying a list of integers.

If  the network has a neighbor structure,  SOM, and if  it  is not removed using DeleteSOM→True,  then you
have to delete a whole row or a column of codebook vectors simultaneously. This is done by setting pos to a
list with two elements. Both of these elements are also lists: the first one containing the numbers of the rows
to  be  deleted  and  the  second  one  containing  the  numbers  of  the  columns  to  be  deleted.  That  is,
pos = 88m, n, …<, 8k, l, …<<  removes rows m  and n  and columns k  and l.  If  you delete only rows or columns,
then one of the elements becomes an empty list.

10.1.5 NetPlot

The NetPlot command is intended to support the illustration of unsupervised networks and their training.

An existing unsupervised network can be evaluated on a data vector directly using the evaluation rule. The
output indicates the codebook vector to which the data vector is mapped. This evaluation rule is actually all
you need for  the unsupervised network. The command NetPlot  merely  complements the evaluation rule
by graphically illustrating the result of the unsupervised network.

The function NetPlot supports the illustration of the clustering in several ways, depending on the choice of
the  option  DataFormat.  An  unsupervised  network  or  the  training  record  can  be  submitted,  the  second
argument given by UnsupervisedNetFit.  If a training record is submitted, then the progress during the
training is illustrated. Consequently, in the calls in the following table, net  can be either a trained unsuper-
vised network or a training record.

NetPlot@net, x, yD illustrates how net clusters data x to given classes y

NetPlot@net, xD illustrates how net clusters data x

Illustrating an unsupervised network or its training.

An output y,  indicating valid classes of the data vectors,  must be in the correct format as described in Sec-
tion 3.2, Package Conventions.

The  option DataFormat  controls  the  way the  clustering  result  is  illustrated,  and  depending  on  its  value,
some of the other options may become obsolete.
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The default in two-dimensional clustering problems is to plot the data together with the codebook vectors.
The positions of the codebook vectors are indicated by their numbers. 

NetPlot takes the following options.

option default value

DataFormat Automatic indicates how the clustering should be illustrated;
the default depends on the dimension
of the data Hdifferent possibilities followL

Voronoi True displays Voronoi cells; if set to False,
indicates the positions of the codebook vectors with crosses

CbvSymbol Automatic changes the mark indicating the codebook vectors

Intervals 5 interval of training iterations between plots in the graphics array

SOM Automatic uses the net  s neighbor feature if one exists

Compiled True uses compiled version

Options of NetPlot.

The option DataFormat takes the following values.

DataMap the default for two-dimensional problems;
gives a plot of data together with the codebook vectors

Table gives a table with one box for each codebook vector;
each box contains the number of data vectors
from each class assigned to this codebook vector

DataMapArray gives a graphics array of the
progress of the clustering during training;
applies only to two-dimensional problems

Possible values of DataFormat.

In  addition  to  these  options,  you  can  submit  others  to  modify  the  graphical  output.  Depending  on  the
chosen option for  DataFormat,  the  graphical  output  is  created  by BarChart,  BarChart3D,  Multipleg
ListPlot, ListPlot, or Plot3D.
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If the unsupervised network has no neighbor feature, then the classification boundaries among the different
codebook vectors are marked with Voronoi cells. From such a plot, it is easy to see codebook vectors that are
not being used, that is, whether they can be considered dead. If Voronoi→True, then the default of CbvSymg
bol is to indicate each codebook vector with its number in the network. You may change this by submitting
a  list  of  symbols.  You  may  also  use  this  option  to  include  options  of  Text,  which  then  modify  only  the
codebook’s marks and not the plot label and the axes.

If Voronoi→False, then the positions of the codebook vectors are indicated with crosses. You may change
the size of the crosses by setting CbvSymbol to a list of two numbers indicating the size in each dimension.

If  the  submitted  unsupervised  network  has  a  neighbor  feature  (that  is,  if  it  is  a  SOM  network),  then  the
default is to plot the neighbor map instead of the Voronoi cells. This can be avoided by setting SOM→False.

In  a  two-dimensional problem,  submitting a training record,  instead of  the  network itself,  results  in  a plot
that  shows  how  the  codebook  vectors  are  changed  from  their  initial  positions  to  the  final  ones.  The  final
classification boundaries are also shown.

10.2 Examples without Self-Organizing Maps

In this section some examples are given where unsupervised networks are used to perform clustering. The
first example is in a two-dimensional space so that the result can be visualized. The second example is in a
three-dimensional  space.  The  last  example  illustrates  potential  difficulties  you  could  encounter  in  using
unsupervised networks.

The  possibility  of  using  a  neighbor  feature  in  an  unsupervised  network,  and  turning  it  into  a  Kohonen
network, is illustrated in the next subsection.

Notice that if you reevaluate the examples you will not obtain exactly the same results due to the random-
ness in the initialization.

10.2.1 Clustering in Two-Dimensional Space

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << sixclasses.dat;
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The data set x is a matrix where each row is a data vector following the standard format described in Section
3.2, Package Conventions. The number of columns indicates the dimensionality of the input space.

Check the number of data vectors and the dimensionality of the data space.

In[3]:= Dimensions@xD
Out[3]= 860, 2<
There are 60 data vectors with a dimensionality of two. Consequently, you can visualize the data by using
NetClassificationPlot.

Look at the data. 

In[4]:= NetClassificationPlot@xD
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The  six  clusters  can  easily  be  recognized.  Because  the  clusters  are  seen  to  follow an arc  along which they
appear to be separable, they obviously share a one-dimensional relationship. The goal of using an unsuper-
vised network is to automatically find these clusters. If you also want to automatically find the one-dimen-
sional relationship among the clusters,  then you should give  the unsupervised network a one-dimensional
neighbor structure.

Although the unsupervised training algorithms do not use any output data, it can still be interesting to keep
track of the clusters to which the various data vectors belong. This information is contained in the variable y,
which has the general structure of an output data matrix in a classification problem, described in Section 3.2,
Package Conventions. This means that it has one row for each data vector and one column for each cluster. 
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Check to which cluster data vector 43 belongs.

In[5]:= y@@43DD
Out[5]= 80, 0, 0, 0, 1, 0<
It belongs to cluster 5.

In  the  initialization of  the  unsupervised  network  you specify  a  number  of  neurons  that  correspond to  the
number of clusters you want to fit to the data.

Initialize and estimate an unsupervised network with eight neurons.

In[6]:= unsup = InitializeUnsupervisedNet@x, 8D;8unsup, fitrecord< = UnsupervisedNetFit@x, unsup, 8, ReportFrequency → 1D;
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UnsupervisedNet::DeadNeuron :  

Some codebook vectors are not used by the data. They
have 'died' during the training. Use UnUsedNeurons to find
out which they are and decide if you want to remove them.

A warning about dead neurons means that some of the codebook vectors were not used to cluster the data.
This is no surprise since you know that there are six clusters and you have eight codebook vectors. Unused
neurons are often a nuisance, and you will soon learn how they can be removed using NeuronDelete.

The  obtained  unsupervised  network  can  be  used  right  away  to  classify  new  data  vectors  to  one  of  the
clusters. This is done by using the evaluation rule of the network.
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Classify a new data vector with the trained unsupervised network.

In[8]:= unsup@80.2, 0.6<D
Out[8]= 83<
The output is the number of the codebook vector that is closest to the data vector.

You can also illustrate the division of the space into the different clusters using NetPlot.

Illustrate the trained unsupervised network together with the data.

In[9]:= NetPlot@unsup, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D
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The position of  the codebook vectors are indicated with their numbers together with the data vectors. You
may submit any Text  options in CbvSymbols  to modify numbers indicating the codebook vectors;  in the
preceding example, a large font was used. The classification boundaries form Voronoi cells. From this plot it
is easy to see which codebook vectors are not being used, that is, whether they can be considered dead. They
can also be obtained with UnUsedNeurons.
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Find and remove the unused codebook vectors.

In[10]:= UnUsedNeurons@unsup, xD
Out[10]= 82, 6, 7<
In[11]:= unsup = NeuronDelete@unsup, %D
Out[11]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 19, 42<,

AccumulatedIterations → 8, SOM → None<D
Due to the randomness in the initialization and in the training, it  is likely that the result will change if you
reevaluate the example.

Look at the clustering of the modified network.

In[12]:= NetPlot@unsup, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D
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You can change the options and plot the result in a different way. For example, by setting Voronoi→False
the positions of the codebook vectors are indicated with crosses. You can change the size of the crosses with
CbvSymbol.

Plot the positions of the estimated clusters.

In[13]:= NetPlot@unsup, x, y, Voronoi → False, CbvSymbol → 80.1, 0.2<,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Unsupervised Clustering

By submitting a training record to NetPlot, you obtain an illustration as to how the training proceeded.

In[14]:= NetPlot@fitrecord, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D
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The plot shows how the codebook vectors are changed from their initial positions to the final ones. The final
positions of the classification boundaries are also shown.

Chapter 10: Unsupervised Networks 273



You can also obtain intermediate plots during the training.

Plot the clustering during the training.

In[15]:= NetPlot@fitrecord, x, y, DataFormat → DataMapArray,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<,
Intervals → 3, CbvSymbol → 8TextStyle → 8FontSize → 20<<D

Unsupervised Clustering after
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If  you  prefer  an  animation  of  the  training  progress,  you  can  load  <<Graphics`Animation`  and  then
change  the  command  to  Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1,  Datag
Format→DataMapArray,DisplayFunction→Identity]].

You can also check the mean distance between the data vectors and the codebook vectors.

In[16]:= UnsupervisedNetDistance@unsup, xD
Out[16]= 0.156935

Initialization  is  random,  by  default.  Instead,  you  can  use  a  SOM  network  to  initialize  the  unsupervised
network, which usually avoids the problem with dead neurons. You can also submit options to Initializeg
UnsupervisedNet so that the result of the initial fitting with SOM is reported.
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Initialize an unsupervised network with six codebook vectors.

In[17]:= unsup = InitializeUnsupervisedNet@x, 6, UseSOM → True,
CriterionPlot → True, CriterionLog → True, Iterations → 20D
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Out[17]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 19, 47<,
AccumulatedIterations → 0, SOM → None, Connect → False<D

Note that although it was specified that SOM should be used in the initialization, the obtained network has
no SOM.  If  you want  the  network to  have a  SOM, you must specify  this with the option SOM.  See  Section
10.1.1, InitializeUnsupervisedNet, to learn how this is done.

If UseSOM is set to True, then the initialization usually gives a fairly good result, but the performance can be
improved by further training.

In[18]:= 8unsup, fitrecord< = UnsupervisedNetFit@x, unsupD;
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This time there are no warnings about dead neurons. Look at the result.

Plot the obtained unsupervised network together with the data.

In[19]:= NetPlot@unsup, x, y, Voronoi → False, CbvSymbol → 80.1, 0.2<,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D
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The clustering is more successful than earlier. There is one codebook vector at each cluster.

Check if the mean distance between the data vectors and the codebook vectors is smaller now.

In[20]:= UnsupervisedNetDistance@unsup, xD
Out[20]= 0.0597949

The clustering result can also be illustrated in a table in the following way.

Verify to which codebook vector the different data vectors are mapped.

In[21]:= NetPlot@unsup, x, y, DataFormat → TableD
Unsupervised Clustering

6:10 2:10 1:10 3:10 4:10 5:10

There  is  one  box  for  each  codebook  vector,  and  in  each  box  the  number  of  data  vectors  from  each  class
belonging to that codebook vector is indicated. If you do not submit any data indicating the correct class, all

Chapter 10: Unsupervised Networks 277



data will be considered belonging to the same class. This gives the following, less informative table, where
only the number of data vectors belonging to each cluster is indicated.

In[22]:= NetPlot@unsup, x, DataFormat → TableD
Unsupervised Clustering

1:10 1:10 1:10 1:10 1:10 1:10

10.2.2 Clustering in Three-Dimensional Space

In this example, the unsupervised network is used to cluster three-dimensional data vectors. You can mod-
ify the data generating commands and rerun the example to test other data sets.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate and plot the data along a curve. 

In[2]:= << Graphics`Graphics3D`;
x = N@Table@8 Cos@tD, Sin@tD, 0.3 t<,8t, 0, 3 Pi, Piê 20<DD;
xgraphics = ScatterPlot3D@x, AxesEdge → 88−1, −1<, Automatic, Automatic<D
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The  data  set  does  not  consist  of  several  clusters.  Instead,  the  data  is  distributed  along  a  curve.  With  an
unsupervised network it should be possible to detect and describe the data along the curve.

Initialize and train an unsupervised network with ten codebook vectors.

In[5]:= unsup = InitializeUnsupervisedNet@x, 10, UseSOM → TrueD;8unsup, fitrecord< = UnsupervisedNetFit@x, unsupD;
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UnsupervisedNet::DeadNeuron :  

Some codebook vectors are not used by the data. They
have 'died' during the training. Use UnUsedNeurons to find
out which they are and decide if you want to remove them.

If  the displayed average distance has not converged, it  could be worth continuing with additional training
iterations. This can be done with the batch training algorithm, which typically allows faster  convergence if
the codebook vectors are close to the minimum.

Chapter 10: Unsupervised Networks 279



Apply three training iterations with the batch training algorithm.

In[7]:= 8unsup, fitrecord< =

UnsupervisedNetFit@x, unsup, 3, ReportFrequency → 1, Recursive → FalseD;
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UnsupervisedNet::DeadNeuron :  

Some codebook vectors are not used by the data. They
have 'died' during the training. Use UnUsedNeurons to find
out which they are and decide if you want to remove them.

In[8]:= unsup

Out[8]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 22, 17<,
AccumulatedIterations → 33, SOM → None<D

The codebook vectors are stored in the first argument of the UnsupervisedNet  object. They can easily be
extracted and plotted.
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Extract and plot the codebook vectors together with the original data vectors.

In[9]:= cbv = unsup@@1DD;
cbvgraphics =

ScatterPlot3D@cbv, PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;
Show@cbvgraphics, xgraphics, DisplayFunction → $DisplayFunction,
AxesEdge → 88−1, −1<, Automatic, Automatic<D
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10.2.3 Pitfalls with Skewed Data Density and Badly Scaled Data

In this section two examples are given whose data distributions are shown to impede successful clustering.
To  some  extent,  this  difficulty  may  be  avoided  by  preprocessing  the  data  using  an  appropriate  linear
transformation.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Clusters with Uneven Data Density 

The  data  used  consists  of  two clusters  with  very  different  numbers  of  data  samples.  Also,  the  data  of  the
larger cluster is more widespread.

Load the data for the example.

In[2]:= << unevendensity.dat;
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Look at the data.

In[3]:= NetClassificationPlot@x, yD
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The  smaller  cluster  is  situated  in  the  lower-left  corner.  All  its  data  vectors  are  close  together.  The  other,
larger cluster exhibits a larger spread in its data vectors.

You will see that it is hard to detect a small cluster near a large one.

Train an unsupervised network with two codebook vectors.

In[4]:= 8unsup, fitrecord< = UnsupervisedNetFit@x, 2D;
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Display the trained network.

In[5]:= NetPlot@unsup, x, yD
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Both codebook vectors have been placed in the large cluster. This can be avoided if you compensate for the
skewed  data  distributions  of  the  clusters.  For  example,  it  might  be  possible  to  remove  some  of  the  data
vectors of the larger cluster. It might also be possible to use more codebook vectors so that several of them
can be used to explain the large cluster.

Skewed Data Distributions

Consider now the following case where the data distribution is very skewed.

Load and look at the data.

In[6]:= << skewed.dat;
NetClassificationPlot@x, yD
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The two clusters have very unsymmetrical distributions and there is a clear “direction” in the data.

Train an unsupervised network with two codebook vectors.

In[8]:= 8unsup, fitrecord< = UnsupervisedNetFit@x, 2D;
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Look at the result.

In[9]:= NetPlot@unsup, x, yD
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Instead of one codebook vector appearing in each cluster, they have both converged to points in between the
clusters, dividing the clusters in the middle. This is due to the skewed data distribution. If the data is prepro-
cessed  with  a  linear  transformation  so  that  the  clusters  become  symmetric,  then  this  problem  may  be
avoided.
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10.3 Examples with Self-Organizing Maps

If  the unsupervised network is  supplied with a neighbor feature so that not only the  distance between the
data  vectors  and  the  closest  codebook  vector  is  minimized,  but  also  the  distance  between  the  codebook
vectors, then you have a SOM network—a self-organizing map. SOM networks are often also called Kohonen
networks.

The aim of a SOM network is to find a mapping from the space of dimension equal to the number of compo-
nents  of  the  data  vectors  to  a  one-  or  two-dimensional  space.  The  mapping  should  preserve  “closeness”
between data vectors; that is, two data vectors that are close to one another in the original space should be
mapped to points (codebook vectors) of  the new space that are also close to one another.  This idea will be
illustrated with some examples.

Notice that if you re-evaluate the examples you will not obtain exactly the same results due to the random-
ness in the initialization. There are several local minima where the training may converge to.

10.3.1 Mapping from Two to One Dimensions 

If not done already, make the Neural Networks package available.

Read in the Neural Networks package and the two-dimensional data in six different clusters.

In[1]:= << NeuralNetworks`

In[2]:= << sixclasses.dat;

The data set x is a matrix with one data vector on each row. The number of columns indicates the dimension-
ality of the input space.

The SOM training algorithm does not use any output data, but it can still be interesting to keep track of the
clusters  to  which  the  various  data  vectors  belong.  This  information is  stored  in  y,  following  the  standard
format of the package as described in Section 3.2, Package Conventions.
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Look at the data indicating the different clusters.

In[3]:= NetClassificationPlot@x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D
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The aim of the SOM network is now to find a one-dimensional relationship among the clusters. Since there
are six clusters, at least six neurons are needed. The neighbor structure is indicated with the option SOM, and
by setting it to 86, 1< you obtain a one-dimensional structure with six clusters in a column. As opposed to this
small example, the true number of clusters is usually unknown. Then you have to experiment with networks
of different sizes. Often it can be advantageous to have more codebook vectors than clusters. If you re-evalu-
ate  this  example  with  a  different  number  of  codebook  vectors  you  will  see  that  there  are  typically  fewer
problems with local minima if you add a couple more codebook vectors.

Define and fit a SOM network with six clusters.

In[4]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 6, SOM → 86, 1<D;
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The specified neighbor feature is now stored as a rule in the second element of the unsupervised network. 

In[5]:= somnet

Out[5]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 25, 14<,
Connect → False, SOM → 86, 1<, AccumulatedIterations → 30<D

Provide information about the network.

In[6]:= NetInformation@somnetD
Out[6]= Unsupervised net with a self−organizing map with 6 codebook vectors organized as

a 6 x 1 array. Takes data vectors with 2 components. Created 2002−4−3 at 14:25.

The obtained SOM network can be evaluated directly on new input data vectors. The neurons are related to
a  structure  as  indicated  by  the  option  SOM,  and  the  outputs  are  the  coordinates  of  the  winning  neurons
within this structure.

Evaluate the SOM network on a new input data vector.

In[7]:= somnet@80.1, 1.2<D
Out[7]= 885, 1<<
The  two  coordinates  give  the  position  of  the  winning  neuron  within  the  SOM  structure.  In  this  example,
only one of the coordinates varies since a one-dimensional SOM structure was chosen. You can also evaluate
a SOM network using the option SOM→False. Then you obtain the number of the winning codebook vector.

Evaluate the SOM network obtaining the number of the winning codebook vector.

In[8]:= somnet@80.1, 1.2<, SOM → FalseD
Out[8]= 85<
Since the data space has two dimensions, the result can be displayed with NetPlot.
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Plot the fitted SOM network.

In[9]:= NetPlot@somnet, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D
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You can also check how the training process developed. This is done by submitting the training record.

In[10]:= NetPlot@fitrecord, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

SOM Clustering

In the plot you can see how the codebook vectors change from the initial position in the center toward their
final positions during the training.

If  the  training  has  not  converged,  you  can  call  UnsupervisedNetFit  once  again.  It  will  start  with  the
submitted model so that you do not have to redo the earlier iterations.
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Continue the training further.

In[11]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnetD;
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If the codebook vectors have gotten fairly close to their minimum, it might be better to apply a few training
iterations to the batch algorithm rather than to the recursive one.

Apply three steps to the batch training algorithm.

In[12]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnet, 3, Recursive → FalseD;
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Display the trained SOM network.

In[13]:= NetPlot@somnet, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D
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If NetPlot  is evaluated with the option DataMap→Table,  then a table is given that indicates which data
vectors are mapped to which codebook vectors. If the dimension of the data space is higher than two, then
this is the default (and only) way for NetPlot to display the result.

Verify to which codebook vector the different data vectors are mapped.

In[14]:= NetPlot@somnet, x, y, DataFormat → TableD
SOM Clustering

6:5 6:5 5:10 4:10 2:10

3:10

1:10

The  table  shows that  both codebook vectors  one and two are  placed at  the sixth  cluster,  and that  the  fifth
codebook vector is used for both clusters two and three. This could also be seen from the earlier plots with
the  data  and  the  codebook  vectors.  Notice  that  you  will  obtain  different  results  if  you  re-evaluate  the
example.

The obtained SOM network can be used to map any number of  data vectors of the correct dimension. The
outputs are the indices of the codebook vector that is closest to the data vector.
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Map two vectors with the SOM network.

In[15]:= somnet@881, 2<, 80, 0<<D
Out[15]= 884, 1<, 86, 1<<
The mean Euclidian distance between a set of data vectors and their nearest codebook vector is given by the
command UnsupervisedNetDistance.

Determine the mean distance between data and codebook vectors.

In[16]:= UnsupervisedNetDistance@somnet, 881, 2<, 80, 0<<D
Out[16]= 0.0153328

This gives a measure of how well the submitted data set is described by the SOM network.

You may remove  some of  the  codebook vectors  from the  SOM  network using NeuronDelete.  You have  to
indicate the rows and the columns to be removed. In this example there is only one column; that is, there is
only  one  codebook  vector  on  each  row.  Remove  the  first  and  the  third  rows.  Notice,  however,  that  dead
neurons  are  not  necessarily  a  nuisance  for  a  SOM  network.  In  the  training,  the  positions  of  the  codebook
vectors are determined by both the closeness to the data and closeness to each other. Therefore, a codebook
vector which is not used by any data can still form a bridge between two clusters. You can see this by re-eval-
uating this example with SOM networks and more codebook vectors.

Remove the first and the third codebook vectors.

In[17]:= somnet = NeuronDelete@somnet, 881, 3<, 8<<D
Out[17]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 25, 16<,

Connect → False, SOM → 84, 1<, AccumulatedIterations → 63<D
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Look at the clustering of the modified network.

In[18]:= NetPlot@somnet, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D
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10.3.2 Mapping from Two Dimensions to a Ring

A one-dimensional SOM network can be connected into a ring. This might be favorable in some cases where
you might be trying to find a one-dimensional cyclic behavior in the data in a high-dimensional space. For
clarity, this is demonstrated in a two-dimensional space.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << classesinring.dat;
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Look at the data.

In[3]:= NetClassificationPlot@x, yD
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From the data plot you can see that the data consists of eight clusters, and they can be connected into a ring.
A SOM network will be used to find this relation. By giving the option Connect→True when the network is
initialized, you indicate that the codebook vectors should be connected into a ring.

Initialize and train a SOM network with eight codebook vectors that are connected into a ring.

In[4]:= 8somnet, fitrecord< =

UnsupervisedNetFit@x, 8, 30, SOM → 88, 1<, ReportFrequency → 5, Connect → TrueD;
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A few steps with the batch training is recommended if the average distance has not converged in the recur-
sive training.
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Apply three training iterations in batch mode.

In[5]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnet, 3, Recursive → FalseD;
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Plot the SOM network and the data.

In[6]:= NetPlot@somnet, x, yD
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Display the result in a table.

In[7]:= NetPlot@somnet, x, y, DataFormat → TableD
SOM Clustering

5:10 4:10 3:10 2:10 1:10 8:10 7:10 6:10
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Ideally there should be only one data cluster at each codebook vector, but often the algorithm is caught in a
local  minimum,  and  then  there  might  be  several  data  clusters  mapped  on  a  common  codebook  vector.
Notice  that  you  will  obtain  a  different  result  if  you  repeat  the  example,  due  to  the  randomness  in  the
algorithms.

It  is  also  possible  to  use  more  codebook  vectors  than  you  have  data  clusters.  Then  there  will  be  several
codebook  vectors  describing  some  of  the  clusters.  You  can  go  back  and  change  the  number  of  codebook
vectors and repeat the example.

This  example  considered  a  one-dimensional  SOM  mapping.  Two-dimensional  SOM  networks  can  also  be
given the option Connect. They are then connected only in the first of the two dimensions, and a topologi-
cal cylinder is formed.

10.3.3 Adding a SOM to an Existing Unsupervised Network

It  is  possible  to  change  the  neighbor  structure  of  an  already-existing  unsupervised  network.  The  example
demonstrates how this is done.

Read in the Neural Networks package and load a data set. 

In[1]:= << NeuralNetworks`

In[2]:= << sixclasses.dat;

Initialize an unsupervised network without any neighbor structure.

In[3]:= unsup = InitializeUnsupervisedNet@x, 6D
Out[3]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 29, 19<,

AccumulatedIterations → 0, SOM → None, Connect → False<D
The  neighbor  structure  is  now  specified  in  the  call  to  UnsupervisedNetFit  using  the  options  SOM  and
Connect.
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Train the unsupervised network and specify the neighbor structure.

In[4]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, unsup, 50, SOM → 86, 1<, Connect → TrueD;
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In[5]:= somnet

Out[5]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 29, 24<,
Connect → True, SOM → 86, 1<, AccumulatedIterations → 50<D

The neighbor structure is now stored in the network with the replacement rule SOM→{} .

10.3.4 Mapping from Two to Two Dimensions

In this example a SOM network is  used to quantize a two-dimensional space. The data space contains two
dimensions and a two-dimensional SOM network is used. Hence, there is no reduction in the dimensionality
of the data, but the mapping could be used to quantize the information in the original data. In addition to
the quantization, there is also the neighbor effect of the SOM network.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << two2twosom.dat;

The data vectors are placed in matrix x with one input vector on each row.
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Look at the data.

In[3]:= NetClassificationPlot@xD
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The data vectors are unevenly distributed as shown in the plot. The training of the SOM network will place
more codebook vectors in regions where data is most concentrated.

Define and train a SOM network with 5 × 4 codebook vectors.

In[4]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 20, 30, SOM → 85, 4<, ReportFrequency → 5D;
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Plot the trained SOM network.

In[5]:= NetPlot@somnet, xD
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When the codebook vectors have gotten fairly close to their minima, it is often advantageous to apply a few
training iterations with the batch algorithm.

Perform three additional iterations with the batch training algorithm.

In[6]:= 8somnet, fitrecord< =

UnsupervisedNetFit@x, somnet, 3, ReportFrequency → 1, Recursive → FalseD;
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Plot the final SOM network.

In[7]:= NetPlot@somnet, xD
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As illustrated in the plot, the codebook vectors are placed closer where data concentrations are higher.

If NetPlot is called with DataMap→Table, you can see how many data vectors are mapped to each of the
codebook vectors.

In[8]:= NetPlot@somnet, x, DataFormat → TableD
SOM Clustering
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10.3.5 Mapping from Three to One Dimensions

This example illustrates how a SOM network can be used to find a one-dimensional relationship in a three-di-
mensional space.  First,  data samples are generated along a  curve.  You can modify the example by making
changes in the data generating commands and rerun the commands.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data along a curve.

In[2]:= << Graphics`Graphics3D`;
x = N@Table@8 Cos@tD, Sin@tD, 0.3 t<,8t, 0, 3 Pi, Piê 20<DD;
xgraphics = ScatterPlot3D@x, AxesEdge → 88−1, −1<, Automatic, Automatic<D
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A knot on the chain of codebook vectors may occur, but the risk of this is typically smaller when the dimen-
sion of  the data space is larger than two. A nonsymmetric neighbor function, which is the default,  reduces
the risk for knots. Here, because the data space is of dimension three, the option Neighbor→Symmetric  is
chosen.
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Train a SOM network with ten codebook vectors.

In[5]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 10, SOM → 810, 1<, Neighbor → SymmetricD;
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If  the displayed average distance has not converged, it  could be worth continuing with additional training
iterations.  Doing  this  with  the  batch  training  algorithm  is  often  advantageous  when  you  are  close  to  the
minimum.

Perform three training iterations with the batch training algorithm.

In[6]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnet, 3, Recursive → FalseD;
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In[7]:= somnet

Out[7]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 30, 39<,
Connect → False, SOM → 810, 1<, AccumulatedIterations → 33<D

The  codebook  vectors  are  stored  in  the  first  element  of  the  SOM  object.  They  can  easily  be  extracted  and
plotted.
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Extract and plot codebook vectors together with the original data vectors.

In[8]:= cbv = somnet@@1DD;
cbvgraphics =

ScatterPlot3D@cbv, PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;
Show@cbvgraphics, xgraphics, DisplayFunction → $DisplayFunction,
AxesEdge → 88−1, −1<, Automatic, Automatic<D
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10.3.6 Mapping from Three to Two Dimensions

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

This example illustrates how a SOM network can be used to find and model a surface in a three-dimensional
space.
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Generate data and look at the surface spanned by the data vectors.

In[2]:= << Graphics`Graphics3D`;
apts = N@Table@8Cos@tD Cos@uD, Sin@tD Cos@uD,
Sin@uD<, 8t, 0, Pi, Piê5<, 8u, Piê2, Pi, Piê10<DD;
xgraphics = ListSurfacePlot3D@apts, ViewPoint −> 8−2.325, 2.146, −1.200<D
x = Flatten@apts, 1D;

There is one data vector at each vertex in the plot.

Look at the dimensionality of the data vectors.

In[6]:= Dimensions@xD
Out[6]= 836, 3<
There are 36 data vectors in a three-dimensional space.
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Initialize and fit a SOM network with 4 × 5 codebook vectors.

In[7]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 20,
70, SOM → 84, 5<, ReportFrequency → 5, Neighbor → SymmetricD;
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Extract the codebook vectors, which are stored in the first element of the SOM network, and plot them.

In[8]:= cbv = somnet@@1DD;
cbvgraphics = ScatterPlot3D@cbv, PlotStyle → AbsolutePointSize@7D,

ViewPoint −> 8−2.325, 2.146, −1.200<, AxesEdge → 88−1, −1<, Automatic, Automatic<D

-1

-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

0

0

0.25

0.5

0.75

1

0

1

This plot does not show very much. It becomes a bit clearer if the codebook vectors are plotted together with
the original surface representing the data vectors.
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Plot the codebook vectors together with the surface.

In[10]:= Show@cbvgraphics, xgraphicsD
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10.4 Change Step Length and Neighbor Influence

There  is  a  default  function  guiding the  step  length in  the  training of  unsupervised  networks,  and another
function for the neighbor strength. These defaults were described in connection with the function UnsuperÖ
visedNetFit,  and they have been chosen to suffice for  a large variety of different  problems. Both have been
chosen  so  that  the  step  length  and  the  neighbor  strength  become  smaller  when  the  number  of  training
iterations increase. Sometimes, however, depending on the data vectors and the chosen size of the unsuper-
vised  network,  it  might  be  advantageous  to  apply  other  functions  than  the  defaults.  The  easiest  way  to
modify the step length and neighbor strength is to submit numerical values in the two options StepLength
and NeighborStrength.  That  gives  constant values to  these  parameters,  and that  might  suffice  in many
cases. The following describes more advanced changes involving functions for these options.

Read in the Neural Networks packages and load a data set. 

In[1]:= << NeuralNetworks`

In[2]:= << two2twosom.dat;

The step length can be chosen to be any function that takes an integer indicating the number of the training
iteration and delivers a step size in the interval 80, 1<. 
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Define a new step length function.

In[3]:= step = Function@n, 1êH5. + nLD
Out[3]= FunctionAn, 1

ccccccccccccccc
5. + n

E
The  neighbor  strength  function  and  the  neighbor  matrix  together  dictate  how  much  the  neighbors  of  the
winning codebook vector  are changed. With a strong neighbor strength,  the codebook vectors will be kept
close to one another, while loose coupling will let them adapt more independently of each other. The neigh-
bor strength function enters the algorithm as a negative exponent, so that a larger value indicates a weaker
neighbor coupling (see Section 10.1.2, UnsupervisedNetFit). The function takes the training iteration number
as an input argument and returns a positive real value. Typically, the neighbor strength should have a low
value at the beginning of the training so that the codebook vectors obtain the correct orientation with respect
to one another. Then, as the training progresses, the coupling strength between the codebook vectors should
become weaker, which can be achieved if the neighbor strength function returns a larger value.

Here, a neighbor strength function is defined to return twice the iteration number. This yields a much faster
decrease in the coupling between the neighbors than the default.

Define a new function guiding the neighbor strength.

In[4]:= neighborstrength = Function@n, n∗2.D
Out[4]= Function@n, n 2.D
With  the  neighbor  option  you  can  specify  the  codebook  vectors,  or  neurons,  that  are  close  to  each  other.
Using the default option NonSymmetric, or the other prespecified alternative Symmetric, makes Unsuperg
visedNetFit create a neighbor matrix automatically with the correct dimensions. A user-specified neigh-
bor matrix should have 2 c - 1 components in each dimension, where c is the number of codebook vectors in
the  corresponding  dimension.  The  center  element,  which  corresponds  to  the  winning  codebook  vectors,
should be zero. Then the winning codebook vector  will  be updated with the step length given by the step
length  function.  The  other  codebook  vectors  will  also  be  updated,  and  their  change  is  influenced  by  the
neighbor  strength  function;  if  the  neighbor  strength  function  gives  larger  values,  then  the  neighbors  are
changed less, as described in Section 10.1.2, UnsupervisedNetFit.

Specify a neighbor matrix for a SOM network with three codebook vectors in one direction and four in the
other. This means that the network has 12 codebook vectors. The elements are chosen to become larger in all
directions  from  the  winning codebook  vectors,  which  means  that  distant  codebook vectors  are  influenced
less than those that are close to the winner.
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Define a neighbor matrix for a SOM network with 3 × 4 codebook vectors.

In[5]:= neighborMatrix =

i
k
jjjjjjjjjjjjjjjj
10 8 6 4 5 6 7
8 6 4 2 3 4 5
6 4 2 0 1 2 3
7 5 3 1 2 3 4
8 6 4 2 3 4 5

y
{
zzzzzzzzzzzzzzzz;

The new choices of step length, neighbor strength, and neighbor matrix can now be submitted as options to
UnsupervisedNetFit.

Train the SOM network with the modified algorithm.

In[6]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 12, 10, SOM → 83, 4<, StepLength → step,
NeighborStrength → neighborstrength, Neighbor → neighborMatrixD;
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The trained SOM network can be evaluated in the same way as shown earlier in the other examples.
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10.5 Further Reading

There are many general books on neural networks, and most of them cover unsupervised methods. Here are
some suggestions:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

T. Kohonen, Self-Organizing Maps, Berlin, Germany, Springer-Verlag, 1995.
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11 Vector Quantization

Vector quantization networks are intended to be used for classification. Like unsupervised networks, the VQ
network is based on a set of codebook vectors. Each class has a subset of the codebook vectors associated to it,
and a data vector is assigned to the class to which the closest codebook vector belongs.  In the neural network
literature, the codebook vectors are often called the neurons  of the VQ network. In contrast to unsupervised
nets,  VQ  networks  are  trained  with  supervised  training  algorithms.  This  means  that  you  need  to  supply
output data indicating the correct class of any particular input vector during the training.

Section  2.8,  Unsupervised  and Vector  Quantization Networks,  gives  a  short  tutorial  on  VQ networks.  Sec-
tion  11.1,  Vector  Quantization Network  Functions  and  Options,  describes  the  functions,  and  their  options
and examples are given in Section 11.2, Examples. Section 11.3, Change Step Length, describes how you can
change the training algorithm by changing the step length.

11.1 Vector Quantization Network Functions and Options

This  section  introduces  the  commands  to  deal  with  VQ  networks.   Examples  of  the  use  of  the  commands
follow in Sections 11.2, Examples.

11.1.1 InitializeVQ

VQ  networks  are  initialized  with  InitializeVQ.  The  initialization  algorithm  can  be  influenced  by  a
number of options.

InitializeVQ is called in the following way.

InitializeVQ@x,y,sizeD initializes a VQ net of indicated
size using input data x and output data y

Initializing a vector quantization network.

VQ networks are stored in objects with head VQ, on a format following the general standard of the package,
as described in Section 3.2, Package Conventions. The first component is a list of the codebook vectors. 



The supplied data matrices x  and y  should have the format described in Section 3.2,  Package Conventions.
The parameter size  should be an integer or a list of integers with one component for each class. It  specifies
the number of codebook vectors in the following way:

   è  The integer indicates the total number of codebook vectors of the VQ network, which are distributed 
uniformly over the classes. The first classes receive one vector more than the others if the number is 
not a multiple of the number of classes.

   è  The list of integers indicates the number of codebook vectors for each class. The total number of 
codebook vectors is given by the sum of the components in this list.

A VQ network can be initialized in two different ways. The default is a random initialization, which sets all
codebook vectors to random values around the mean value of the data vectors in x. In most cases it is better
to initialize by using an unsupervised network for each class of the data. This is done by setting the option
UseUnsupervisedNet→True, and most of the options of InitializeVQ are used to control the training
of  the  unsupervised  networks.  Since  an  unsupervised  network  can  be  initialized  using  a  SOM  neighbor
map, it could also be interesting to change the behavior of the SOM training by passing on some options to
InitializeUnsupervisedNet.  This can be done using the option SOMOptions,  where you can submit
the options in a list. More details about the initialization may be found in Section 10.1.2, UnsupervisedNetFit.

InitializeVQ  takes the following options. Notice that most of  the options control the initial competitive
training  with  an  unsupervised  network.  Therefore,  they  remain  inactive  if  you  do  not  set  UseUnsuperg
visedNet→True.
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option default value

UseUnsupervisedNet False if  True,
initializes the VQ net using an unsupervised net;
otherwise, random initialization is true

Compiled True applies the unsupervised training compiled

Iterations 6 number of iterations with the unsupervised net

Recursive False applies the competitive training in batch mode

InitialRange 0.01 initial range of the parameters
if the net is randomly initialized

StepLength Automatic step length function for the competitive training

SOMOptions 8< list of options to be used in
the initial training with the SOM net

CriterionPlot False gives no plot to present the result of the
training with the competitive algorithm

CriterionLog False logs no information about the
training with the competitive algorithm

CriterionLogExtN True if the  CriterionLog option is set to True,
then presents the training
log in a separate notebook

ReportFrequency 2 if the  CriterionLog option is set to True,
then the performance logs with
this frequency during the training

MoreTrainingPrompt False prompts for more training iterations if set to True

Options of InitializeVQ.

Some of the options are set differently from those of InitializeUnsupervisedNet  when used directly.
For  example,  using  the  default,  no  training  results  are  reported.  The  default  value  of  the  StepLength
option is Function[If[#<3, 0.1, 0.5]].

A random initialization is much faster than using the initialization based on unsupervised networks. How-
ever, it is often worth the effort to use the unsupervised initialization since it will usually reduce the training
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required when VQFit is subsequently applied. This is illustrated in Section 11.2.1, VQ in Two-Dimensional
Space.

You can also include any set  of vectors of  appropriate dimension as initial codebook vectors in an existing
VQ network. In this way you can start the training at any point you wish, or write your own training algo-
rithm. How this is done is described in Section 13.1, Change the Parameter Values of an Existing Network.

The  default  of  the  option  StepLength  depends  on  whether  the  training  is  performed  recursively  or  in
batch. The defaults are given in the following table.

1 if Recursive→False

Function@If@#<5, 0.01, 2.êH3+#LDD if Recursive→True

Default values of the StepLength option.

The  step  length  can  be  modified  with  the  StepLength  option  by  submitting  a  numerical  constant  or  a
function of choice. This is done the same way as for unsupervised networks and is also illustrated in Section
11.3, Change Step Length.

11.1.2 VQFit 

An initialized VQ network can be trained with VQFit.  It is also possible to start directly with VQFit with-
out an already initialized VQ network, but then you cannot influence the initialization with any options.

VQFit@x,y, sizeD initializes and trains a VQ network of indicated
size the default number of iterations, which is six

VQFit@x,y,size,iterationsD initializes and trains a VQ network of
indicated size a specified number of iterations

VQFit@x,y,netD trains a supplied VQ network the
default number of iterations, which is six

VQFit@x,y,net,iterationsD trains a supplied VQ network a specified number of iterations

Training a vector quantization network.

An existing network can be submitted for  more training by setting net  equal  to the network or its  training
record.  The advantage of submitting the training record is that the information about the earlier training is
combined with the additional training.
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The input data vectors are indicated by x and the output by y.

VQFit  returns a list of two variables. The first variable is the trained vector quantizer and the second vari-
able is a training record. The training record,  with head VQRecord,  can be used to analyze the progress of
the training and for validation, using the command NetPlot. You can also extract intermediate information
about the training from the training record, as described in Section 7.8, The Training Record.

Intermediate  results  during  the  training  are  displayed  in  a  separate  notebook,  which  is  created  automati-
cally. After each training iteration, the fraction of misclassified data is written out. The value 1 means that all
data vectors are incorrectly classified, and 0 means that they are all correctly classified. Using the options of
VQFit,  as  described  in Section 7.7,  Options Controlling Training Results  Presentation,  you can change the
way the training results are presented.

If  the  number  of  training  iterations  is  not  supplied,  the  VQ  learning  algorithm will  terminate  in  six  itera-
tions. The necessary number of training iterations can vary substantially from one problem to another. If you
did not apply enough iterations, you can submit the VQ network to VQFit  a second time to  train further.
Consequently, you do not have to start from the beginning.

At  the  end  of  the  training,  the  fraction  of  misclassified data  versus  the  training iteration is  displayed  in  a
plot, assuming this facility is not switched off with the option CriterionPlot.

A derived VQ network can be evaluated on data using the function evaluation rule. The output will indicate
the class to which the input is classified with a 1 in the corresponding column.

net@xD evaluates net on the input vector x

Function evaluation of a vector quantization network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
on each row.

VQ networks are stored in a format following the general standard of the package, as described in Section
3.2,  Package  Conventions.  The  first  component  contains  a  list  of  the  codebook  vectors,  which  you  may
change directly as described in Section 13.1, Change the Parameter Values of an Existing Network.

VQFit takes the following options.
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option default value

StepLength Automatic positive numerical value or a function,
which determines the adaptation step
length as a function of the number of iterations

Recursive True recursive or batch training

Method LVQ1 training algorithm; alternative: Competitive

Compiled True uses the compiled version of the training algorithm

CriterionPlot True displays the fraction of misclassified
data versus the number of iterations
in a plot after the training is finished

CriterionLog True logs intermediate results during training

CriterionLogExtN True displays the fraction of
misclassified data in a separate notebook

ReportFrequency 1 report interval, in training iterations,
of the intermediate results
logged and displayed during training

MoreTrainingPrompt False prompts for more training iterations if set to True

Options of VQFit.

The  options  CriterionPlot,  CriterionLog,  CriterionLogExtN,  ReportFrequency,  and  Moreg
TrainingPrompt  are  common in  the  other  training commands in  the  Neural  Networks  package,  and they
are described in Section 7.7, Options Controlling Training Results Presentation. 

There  are  two  possible  training  algorithms  for  VQ  networks,  and  the  choice  is  made  with  the  option
Method.  Both training algorithms can be applied recursively or in batch mode. The batch version just adds
up the contribution over the whole data set before  the codebook vectors are changed. The default  training
algorithm is the Learning Vector Quantization 1 (LVQ1) by Kohonen. 
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LVQ1 is the recursive version of the algorithm and is described by the following steps:

   1.  Begin with a given N input-output data vectors 8xk, yk<, k = 1, ..., N, in each update.

   2.  k is chosen randomly from a uniform integer distribution between 1 and N, inclusively.

   3.  The codebook vector closest to xk, called the winning neuron, or the winning codebook vector, is 
identified. Its indices are indicated by 8i, j<, where j is the class it belongs to and i is the number of 
the codebook vector within this class.

   4.  The winning codebook vector is then changed in different ways depending on whether or not the 
winning codebook vector is from the correct class according to yk. If xk is correctly classified, then 
the winning codebook is changed as

(1)wi,j = wi,j + SL@nD ∗ Hxk − wi,jL
         otherwise the winning codebook vector is changed according to

(2)wi,j = wi,j − SL@nD ∗ Hxk − wi,jL
         where n is the iteration number.

  5.  The described steps are repeated N times in each iteration.

Abbreviations have been used; SL[n] is the StepLength function, which may be changed by the option of
the same name.

With Recursive→False, all data is used in each iteration, and the training follows a deterministic scheme
where  the  mean  value  of  the  update  given  by  Equation  11.1  and  Equation  11.2  over  all  data8xk, yk<, k = 1, ... N is used. 

The  second  possible  training  algorithm,  Competitive,  is  the  same  training  algorithm  used  for  unsuper-
vised networks, but applied to one class at the time. The data is divided into the different classes according
to the information in the submitted output data, and in each training iteration the codebook vectors of each
class are updated using its data with the same algorithms as UnsupervisedNetFit.

11.1.3 NetInformation

Some information about a VQ network is presented in a string by the function NetInformation.
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NetInformation@vqD gives information about a VQ net

The NetInformation function.

11.1.4 VQDistance, VQPerformance, UnUsedNeurons, and NeuronDelete

The three following functions are used to test and validate VQ networks with respect to different aspects.

The  function  VQDistance  gives  the  average  Euclidian  distance  between  the  data  vectors  and the  nearest
codebook vector of the supplied VQ network. There is no test when the data vectors are correctly classified.

VQDistance@vq,xD mean Euclidian distance between
data x and the nearest codebook vector

Average distance to the nearest codebook vector for a vector quantization network.

VQDistance has one option.

option default value

Compiled True uses compiled code

Option of VQDistance.

If VQDistance  returns a small value, all the data vectors are close to a codebook vector, in which case the
quantization can be considered successful.

The  function  VQPerformance  tests  the  classification  performance  of  the  VQ  network.  The  output  is  the
fraction of misclassified data vectors. Therefore, 0 means that all vectors are correctly classified.

VQPerformance@vq,x,yD gives the fraction of data incorrectly classified by the VQ net

Fraction of misclassified data vectors.

The input data vectors are indicated by x and the output by y.

Sometimes  there  might  be  codebook  vectors  that  are  never  used;  that  is,  no  data  vectors  are  mapped  to
them. These neurons are called dead neurons,  or dead codebook  vectors.  Since these codebook vectors are not
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used  by  the  data,  they  make  the  network  more  complicated  than  it  has  to  be.  It  might  be  of  interest  to
remove them using NeuronDelete. The following command points out the dead neurons.

UnUsedNeurons@vq,xD gives the numbers of the
unused codebook vectors for each class

Find the unused codebook vectors.

The output is a list with one sublist for each class including the numbers of the unused neurons.

NeuronDelete is used to remove codebook vectors from an existing VQ network.

NeuronDelete@net, 8m, n<D deletes codebook vectors n of class m

Delete codebook vectors in an existing vector quantization network.

The second argument can also contain a list of codebook vectors to be removed.

11.1.5 NetPlot

The function NetPlot  can be used to illustrate a VQ network and its training. Depending on the value of
option DataFormat,  the result is displayed in different ways. If the argument net  is chosen to be a trained
VQ network, you get an illustration of the network. If it is chosen to be a training record, the second output
argument of VQFit, then an illustration of the training is obtained.

NetPlot@net,x,yD information about a VQ net and
how it classifies data of given classes

NetPlot@net,xD information about a VQ net and how it classifies data

Illustrate a vector quantization network or its training.

The input data vectors are indicated by x and the output by y.

For  two-dimensional  data  vectors,  and  with  the  default  options,  NetPlot  plots  the  data,  indicates  the
positions of  the  codebook  vectors  with  a  number  corresponding  to  the  number  of  the  class,  and plots  the
Voronoi cells of the codebook vectors.
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NetPlot takes the following options.

option default value

DataFormat Automatic indicates how the data is to be illustrated;
default depends on the dimension of the data,
with different possibilities described in the following

Voronoi True displays Voronoi cells

CbvSymbol Automatic changes the symbol indicating the codebook vectors

Intervals 5 interval of training iterations between
plots in the graphics array of NetPlot

Compiled True uses compiled version

Options of NetPlot.

Depending on how the option DataFormat is set, one of the functions MultipleListPlot, BarChart, or
BarChart3D  is used. Any options of these functions can be given in the call to PlotVQ,  and they are then
passed on to the plot command.

The option DataFormat takes the following values.

DataMap as the default for two-dimensional problems,
gives a plot of the data together with the codebook vectors

BarChart illustrates the classification result with a bar chart

Table gives a table with one box for each class;
in each box indicates the number of data
vectors from each class classified to this class

ClassPerformance as the default for training records
when the input dimension is larger than two,
plots the classification performance versus training iterations

DataMapArray gives a graphics array of the
progress of the clustering during training;
applies only to two-dimensional problems

Possible values of DataFormat.
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The two last possibilities only apply when NetPlot is applied to a training record.

If the dimension of the codebook vectors is higher than two, then the default way to illustrate the classifica-
tion is to use a bar chart. 

A  three-dimensional  bar  chart  plots  the  VQ-derived  classifications  of  the  input  data  against  their  actual
classifications known from the original given  output  data.  If  the  two match perfectly,  the  chart  consists of
three-dimensional  bars  along  a  diagonal,  the  heights  of  which are  the  class  populations.  Misclassifications
show up as nondiagonal columns.

If no output is  supplied, the result is given in a two-dimensional bar chart. It  illustrates the distribution of
the classification of the supplied data.

If  the  training  record,  the  second  output  argument  from  VQFit,  is  submitted  instead  of  the  VQ  network,
then the  improvements of  the VQ network during the training is  illustrated using the logged intermediate
results at the frequency given by the ReportFrequency option of VQFit.

By  supplying  the  training  record  and  by  choosing  DataFormat→ClassPerformance,  the  classification
result  for  each  class  can  be  plotted  versus  the  number  of  training  iterations.  The  other  possible  values  of
DataFormat  give graphics arrays of the corresponding result when NetPlot  is applied to a VQ network.
Each plot in the array illustrates the result at a certain stage of the training.

If  Voronoi→True,  then the default  of  CbvSymbol  is to  indicate each codebook vector  with its number in
the  network.  You can change this  by  submitting a  list  of  symbols.  You can also use  this  option to  include
options of Text, which then modifies only the codebook’s marks, and not the plot label and the axes. 

Instead of displaying the Voronoi cells, you can have a cross at the position of each codebook vector. This is
done  by choosing Voronoi→False.  The  size of  the  crosses  is  automatically set,  but  you can change it  by
setting the option CbvSymbol to a list of numbers indicating the desired size.

11.2 Examples

In  this  section  VQ  networks  are  used  for  classification  in  some  small  examples.  The  first  two  examples
illustrate  the  commands.  Then,  a  series  of  examples  follows,  illustrating some possible  problems  you may
encounter using VQ nets. The last example illustrates the different initialization algorithms.

It  is  always  easier  to  illustrate  the  data  and  the  classifier  in  two-dimensional  problems;  so,  most  of  the
examples are constrained to that dimensionality for didactic reasons.
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11.2.1 VQ in Two-Dimensional Space

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

The file vqthreeclasses.dat contains two-dimensional data divided into three classes, consisting of two
clusters.

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

The  data  vectors  are  stored  in  the  matrix  x  with  one  data  vector  per  row.  The  correct  classes  of  the  data
vectors  are indicated in the output data y.  The  data format follows the general standard of the package as
described in Section 3.2, Package Conventions.

It is always instructive to look at data. By visually inspecting the plot you may understand the classification
problem better, which will help you make better decisions in the problem-solving process. In this case, you
have two-dimensional data that can be plotted right away.

Plot the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<D
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From the plot, it is evident that the data is divided into six clusters. Also the clusters form pairs so that there
are three classes with two clusters in each.
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Initialize  and  train  a  VQ  network  with  seven  codebook  vectors  for  eight  iterations.  The  codebook  vectors
will  be  distributed  among  the  three  classes,  giving  three  for  the  first  class  and  two  each  for  the  two  last
classes. This is obviously one more than necessary, which will be illustrated in the plots.

Initialize and train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 7, 8D;
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VQFit::DeadNeuron :  

Some codebook vectors are not used by the data. They have 'died'
during the training. Use UnUsedNeurons to find out
which they are and decide if you want to remove them.

At the end of  the training, the criterion,  the fraction of misclassified data vectors,  is plotted.  From the plot
you can decide if more training iterations are necessary.

The warning message VQFit::DeadNeuron indicates that there are codebook vectors not being used in the
classification. This will be investigated in the following section.

The training can be illustrated using the training record and the function NetPlot. In the two-dimensional
case the default is to plot the evolution of the codebook vectors during the training, the Voronoi cells of the
final classifier, and the data, all together.
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Plot the development of the classifier.

In[5]:= NetPlot@fitrecord, x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

1 1

1

2

2
33

From this plot you can see the unused codebook vector.

Illustrate the training with a series of plots.

In[6]:= NetPlot@fitrecord, x, y, DataFormat → DataMapArray,
SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<, Voronoi → FalseD

VQ Classification after
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Iteration: 0
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Iteration: 5

If  you  prefer,  you  can  animate  the  results  as  described  in  Section  5.2.1,  Function  Approximation  in  One
Dimension.

The  unused  codebook  vector  can  be  identified  from  the  previous  plots,  or  with  the  help  of  UnUsedNeug
rons.  Then,  you can remove it  using NeuronDelete.  Notice  that the  result  given from UnUsedNeurons
has to be modified slightly to fit the input format of NeuronDelete.
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Identify the unused codebook vector and remove it.

In[7]:= UnUsedNeurons@vq, xD81, Flatten@%D@@1DD<
vq = NeuronDelete@vq, %D

Out[7]= 881<, 8<, 8<<
Out[8]= 81, 1<
Out[9]= VQ@8−Codebook Vectors −<,8CreationDate → 82002, 4, 3, 14, 33, 3<, AccumulatedIterations → 8<D

Look at the classification with the modified network.

In[10]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D
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It is often good to end the training with a few iterations of the training algorithm in batch mode. You should
also always consider applying more training after the network structure has been modified.
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Apply three additional training iterations with the batch algorithm.

In[11]:= 8vq, fitrecord2< = VQFit@x, y, vq, 3, Recursive → FalseD;
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Although  the  classification  performance  is  perfect  already  at  the  beginning  of  this  additional  training,  in
general, this training will fine-tune the positions of the codebook vectors.

The obtained VQ network can be evaluated on any (new) data vectors by just using the evaluation rule for
VQ objects. 

Evaluate the VQ network on two data vectors.

In[12]:= vq@881, 1<, 83, 3<<D
Out[12]= 880, 0, 1<, 80, 0, 1<<
The class to which the data vectors are classified is indicated by the columns that contain a 1. The evaluation
rule  is  actually  everything  you  need  to  use  the  VQ  network.  You  can  use  all  available  Mathematica  com-
mands to illustrate the result. There are, however, some commands available to facilitate the illustration and
use of VQ networks.

Find the percentage of misclassified data vectors.

In[13]:= VQPerformance@vq, x, yD ∗100

Out[13]= 0
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Find the average distance between the data vectors and the closest codebook vector.

In[14]:= VQDistance@vq, xD
Out[14]= 0.116431

Display the obtained classifier together with the data.

In[15]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30, FontFamily → "Times"<<D
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Using the command NetPlot, the classification result can be presented in several ways. If the DataFormat
option is set to BarChart, you obtain a three-dimensional bar chart where the diagonal bars correspond to
correctly classified data vectors, and the off-diagonal ones correspond to misclassified data vectors.

Display the result with bar charts.

In[16]:= NetPlot@vq, x, y, DataFormat → BarChartD
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The heights of the columns in the bar chart correspond to the number of data vectors. When the classifica-
tion  is  exact,  the  bar  chart  has  only  diagonal  columns,  each  of  which  represents  a  class  and  has  a  height
equal to that class’s population.  If some vectors of a given class are classified incorrectly by the VQ network
model, an off-diagonal column will be shown with the appropriate height. 

If  no output is  supplied, the result is given in a two-dimensional bar chart. It  illustrates the distribution of
the classification of the supplied data.

Illustrate the classification result without output data.

In[17]:= NetPlot@vq, x, DataFormat → BarChartD
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If  the  training  record,  the  second  output  argument  from  VQFit,  is  submitted  instead  of  the  VQ  network,
then  the  improvements  of  the  VQ  network  during  the  training  can  be  illustrated.  The  intermediate  result
during the training was logged by the frequency given by the ReportFrequency option of VQFit.

By choosing DataFormat→ClassPerformance the classification result for each class is plotted.
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Plot the classification versus training iteration.

In[18]:= NetPlot@fitrecord, x, y, DataFormat → ClassPerformanceD
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You can have a  cross  at the  position of  each codebook vector  instead of  the  Voronoi cells.  This is  done by
choosing Voronoi→False. The size of the crosses is automatically set, but you can change it by setting the
option CbvSymbol to a list of numbers indicating the size desired.
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Illustrate the classification with crosses of specified size instead of Voronoi cells.

In[19]:= NetPlot@vq, x, y, Voronoi → False,
SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<, CbvSymbol → 80.2, 0.2<D
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The label of the codebook vectors can be changed by using the option CbvSymbol, and you can also submit
any option of MultipleListPlot. Here the plot range is changed.

Choose other labels for the codebook vectors and modify the plot range.

In[20]:= NetPlot@vq, x, PlotRange → 88−0.5, 2.2<, 8−0.5, 2.5<<,
CbvSymbol → 8"a", "b", "c", "d", "e", "f", TextStyle → 8FontSize → 20<<D
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In the plot above there was no true output signal submitted in the call. Then all data are marked identically
in the plot. If  you do not have the true output available, and you want to distinguish the data items classi-
fied to the different  classes,  you can include the classification according to the VQ network in the function
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call. However, notice the difference from the case when you submit the true output. It is only in the second
case that you can see misclassified data and get a feeling of the quality of the classifier.

Indicate the data classified to the different classes.

In[21]:= NetPlot@vq, x, vq@xD, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

1

1

2

2

33

The classification result  can also be displayed in a table. Each entry in the table represents one class of the
VQ network and includes information about the data vectors assigned to that class. For each class, a series of
entries of the form a : b are given where a indicates the class label of the data, and b indicates the number of
samples from this class. For example, if the second entry is 2 : 20, 3 : 2, then this means that 20 samples from
class 2 and two samples from class 3 are assigned to class 2 by the network.

First the class label according to the supplied output data is given, followed by “:” , and then the number of
data vectors of this kind assigned to the class is given.

Present the classification with a table.

In[22]:= NetPlot@vq, x, y, DataFormat → TableD
VQ Classification

1:20 2:20 3:20
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11.2.2 VQ in Three-Dimensional Space

In this three-dimensional example it is harder to illustrate the classification result. However, since many real
problems are based on higher-dimensional data vectors, this example illustrates how you can proceed when
the data cannot be visualized in two-dimensional plots.

Read in the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << vqthreeclasses3D.dat;

The three-dimensional data set consists of three classes, each of which is divided into two clusters. The input
vectors are stored in the matrix x  and the output vectors in the matrix y,  following the standard format of
the package described in Section 3.2, Package Conventions.

Check the dimensionality.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 860, 3<
Out[4]= 860, 3<
Obviously, there are 60 three-dimensional data values divided into three classes.

You can check how the data is distributed between the different  classes. If  the distribution is very skewed,
you might want to take some measures (for example, selecting more data from the classes that might not be
well represented) prior to the training.
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Plot the distribution of data vectors over the classes.

In[5]:= NetClassificationPlot@x, yD
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Each bar represents the number of data vectors in that class.

It  is  possible to  project  the high-dimensional data vectors to  a two-dimensional space and then look at the
projection. This is done by multiplying the input data vectors with a projection matrix.

Look at a projection of the data.

In[6]:= NetClassificationPlot@x . 881, 0<, 80, 0<, 80, 1<<,
y, SymbolStyle → 8Hue@.7D, Hue@.5D, Hue@.0D<D
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The  problem  is,  of  course,  to  decide  how  the  projection  matrix  should  be  chosen.  It  is  hard  to  give  any
general recommendations other than that you should try several different projections.
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Choose a different projection.

In[7]:= NetClassificationPlot@x . 881, 0<, 80, 1<, 80, 0<<,
y, SymbolStyle → 8Hue@.7D, Hue@.5D, Hue@.0D<D
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If  you find a projection so that the classes are well separated, then in most cases it is better to work on the
projected data.  Here the original three-dimensional data is  used. Train a VQ network to the data using six
codebook vectors.

Train a VQ network.

In[8]:= 8vq, fitrecord< = VQFit@x, y, 6D;
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The obtained VQ network can be evaluated in different  ways. You can always use the standard evaluation
rule and then use general Mathematica commands to illustrate the result in a plot. 
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Evaluate the VQ network on two data vectors.

In[9]:= vq@881, 1, 1<, 83, 3, 3<<D
Out[9]= 880, 0, 1<, 81, 0, 0<<
The number of the column designated by 1 is the class to which the corresponding data vector is assigned. 

You can also use the special commands for illustrating VQ networks and their performance.

Get the fraction of the misclassified data vectors.

In[10]:= VQPerformance@vq, x, yD
Out[10]= 0

Check the mean distance between the data vectors and the codebook vectors.

In[11]:= VQDistance@vq, xD
Out[11]= 0.226935

By applying NetPlot to the training record you obtain one plot for each class showing the improvement of
the classifier versus training iterations.

Plot the improvement of the classification performance.

In[12]:= NetPlot@fitrecord, x, yD
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Plot the classification result with bar charts.

In[13]:= NetPlot@vq, x, yD
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The classification result can also be presented with a table. There is one entry for each class according to the
classification by the VQ network. At each entry the number of data vectors and their classes, as indicated by
the output data, are listed.
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Illustrate the classification with a table.

In[14]:= NetPlot@vq, x, y, DataFormat → TableD
VQ Classification

1:20 2:20 3:20

11.2.3 Overlapping Classes

When  input  data  exhibits  major  overlaps  among  their  various  classes,  the  training  algorithm  for  VQ  net-
works must be able to cope. The LVQ1 algorithm’s codebook vectors will not be able to converge to the class
cluster  centers  when data vectors  from other  classes are  in  the  vicinity.  In  fact,  the  code vectors  will  repel
away from vectors of incorrect classes. In contrast, the competitive algorithm is capable of dealing with this
situation by creating codebook vectors  that  are  independent  of  data that are  not from the class of  interest.
This  will  be  illustrated  in  a  small  example  with  two  overlapping  Gaussian  clusters.  See  Section  10.1.2,
UnsupervisedNetFit, and Section 11.1.2, VQFit, for details on the algorithms. 

Load the Neural Networks package and a data set consisting of two overlapping classes.

In[1]:= << NeuralNetworks`

In[2]:= << overlapping.dat;

The input data vectors are stored in the matrix x  and the output in y  following the standard format in Sec-
tion 3.2, Package Conventions.
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Look at the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-2 -1 0 1 2 3

-1

0

1

2

3

First a VQ network is trained using the default LVQ1 algorithm.

Train a VQ network with two codebook vectors using LVQ1.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 2, 15D;
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The mean distance between the data points and the codebook vector is the smallest possible if the codebook
vectors are placed in the center of the clusters.

The mean distance between the data vectors and the codebook vector.

In[5]:= VQDistance@vq, xD
Out[5]= 0.968518

Chapter 11: Vector Quantization 337



You can easily plot the position of the codebook vectors.

Plot the data and the classifier.

In[6]:= NetPlot@vq, x, y, Voronoi → False,
CbvSymbol → 81, 1<, SymbolStyle → 8Hue@.7D, Hue@.0D<D
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This result will now be compared to the Competitive command.

Train a VQ network with competitive training algorithm.

In[7]:= 8vq, fitrecord< = VQFit@x, y, 2, 15, Method → CompetitiveD;
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Check  the  mean  distance  between  the  data  points  and  the  codebook  vectors.  It  is  a  little  bit  smaller  than
before when the LVQ1 algorithm was used. The reason for this is that the codebook vectors converge to the
cluster centers when the competitive algorithm is used.
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Find the mean distance between the data vectors and the codebook vector.

In[8]:= VQDistance@vq, xD
Out[8]= 0.881444

Look at the position of the codebook vectors and compare this plot with the earlier one obtained with LVQ1.

Plot the data and the codebook vectors.

In[9]:= NetPlot@vq, x, y, Voronoi → False,
CbvSymbol → 81, 1<, SymbolStyle → 8Hue@.7D, Hue@.0D<D
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11.2.4 Skewed Data Densities and Badly Scaled Data

Input data vectors are classified to the closest codebook vector using the Euclidian distance. This might not
be a good distance measure if  the data distributions are very skewed.  Sometimes it  is  possible to scale the
data to circumvent this problem, but not always. In this example one possible problem is illustrated.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

The file vqskewed.dat contains two-dimensional data from two classes with different distributions.

Load the data.

In[2]:= << vqskewed.dat;
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The  input  vectors  are  contained  in  x  and  the  output  in  y  according  to  the  standard  format  of  the  Neural
Networks package described in Section 3.2, Package Conventions.

Plot the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-1 0 1 2

0

1

2

3

4

As  seen  in  the  plot,  the  data  distributions  are  very  skewed.  Consider  a  VQ  network  to  classify  the  data
vectors using two codebook vectors, one for each class.

Train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 2D;
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Plot the data together with the classifier. Some data vectors will be incorrectly classified.
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Plot the data vectors and the classification result.

In[5]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D
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Find the percentage of misclassified data vectors.

In[6]:= VQPerformance@vq, x, yD∗100
Out[6]= 3.5

Consider  now  a  VQ  network  with  more  codebook  vectors  for  each  class.  This  will  make  it  possible  to
describe the extension of the data.

Train a VQ network with three codebook vectors for the first class and two for the second.

In[7]:= 8vq, fitrecord< = VQFit@x, y, 83, 2<D;
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Plot the data vectors and the classification result.

In[8]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D
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Now you have  three  codebook vectors  representing the  first  class  and two for  the  second one.  In  the  plot
this is indicated by three codebook vectors labeled 1 and two labeled 2.

Is the classification any better than if only two codebook vectors are used?

Find the percentage of misclassified data vectors.

In[9]:= VQPerformance@vq, x, yD∗100
Out[9]= 0.5

11.2.5 Too Few Codebook Vectors

In this example you will see what can happen if you have too few codebook vectors for some of the classes.
There  is  no  general  rule  describing  how  to  choose  the  number  of  codebook  vectors,  so  they  have  to  be
chosen by trial and error in most cases. 

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << vqthreeclasses.dat;

The data vectors are stored in the matrix x  with one data vector  on each row. The data format follows the
general standard of the package as described in Section 3.2, Package Conventions.
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Plot the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.1D, Hue@.5D, Hue@.0D<D
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The data is divided into three classes, each consisting of two clusters.

Initialize  and  train  a  VQ  network  with  four  codebook  vectors.  They  will  be  distributed  among  the  three
classes, giving two for the first class and one each for the other two classes.

Initialize and train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 4D;
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Display the obtained classifier together with the data.

In[5]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.1D, Hue@.5D, Hue@.0D<D
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The result is not very impressive, as is also evident in the bar chart.

Display the result with bar charts.

In[6]:= NetPlot@vq, x, y, DataFormat → BarChartD
1

2
3Data

1
2

3 Model

0
5
10

15

20

Samples

1
2

3 Model

The off-diagonal bars correspond to misclassified data vectors and, as you can see, there are plenty of them.
The reason for this is that there is only one codebook vector to describe two clusters. This happens for two of
the classes.
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11.3 Change Step Length

The  option StepLength  works  for  VQ  networks  exactly  as  it  does  for  the  unsupervised  networks.  If  the
default does not suffice, you can supply another function that takes the iteration number as input and gives
the step length as output. You can also submit a numerical value, which gives a constant step length. These
possibilities are illustrated here.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

A set of test data is used to illustrate the StepLength option.

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

The input data vectors are stored in the matrix x  and the output in y.  The data format follows the general
standard of the Neural Networks package as described in Section 3.2, Package Conventions.

Define a function to give the step length as a function of the iteration number.

In[3]:= step = Function@n, 1êH5. + nLD;
The initialized VQ network is then trained with the new step length function.

Initialize and train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 6, StepLength → stepD;
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Instead of supplying a function, you can also submit a constant step length.

Train with a constant step length.

In[5]:= 8vq, fitrecord< = VQFit@x, y, 6, StepLength → 0.1D;
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11.4 Further Reading

Most general books on neural networks cover vector quantization algorithms. Here are some suggestions:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

T. Kohonen, Self-Organizing Maps, Berlin, Germany, Springer-Verlag, 1995.
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12 Application Examples

This chapter contains examples in which several different neural network models are applied and compared.

12.1 Classification of Paper Quality

In  this  example  different  neural  classifiers  are  compared  using  data  from  a  hybrid  gas  array  sensor,  an
electronic  nose.  The  odors  from  five  different  cardboard  papers  from  commercial  manufacturers  were
recorded with the electronic nose. Different kinds of classifiers will be trained to determine the origin of an
unknown sample. 

The  data  was  kindly  contributed  by  the  Swedish  Sensor  Centre,  S-SENCE.  (See  their  website  at
www.ifm.liu.se/Applphys/S-SENCE.)  More  information on the data set  can be  found in “Identification of
paper quality using a hybrid electronic nose” by Martin Holmberg, Fredrik Winquist, Ingemar Lundström,
Julian W. Gardner, and Evor L. Hines, Sensors and Actuators B 26-27 (1995), pp. 246–249.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << paper.dat;

There is one data set for estimation, xs and ys, and one for validation of the classifiers, xv and yv.

Check the dimensions of the data.

In[3]:= Dimensions@xsD
Dimensions@ysD

Out[3]= 848, 15<
Out[4]= 848, 6<
There are 48 data samples available for estimation. Each paper sample is characterized by 15 x values from
the 15 sensors in the electronic nose sensor array.



Five  different  types  of  cardboard  paper  and plain  air  were  measured,  making  six  possible  output  classes.
The correct class of each data sample is stored in y, with a 1 in the appropriate column indicating the class of
the sample. This follows the general format of classification data described in Section 3.2.1, Data Format.

Check the class of the 27th sample of validation data.

In[5]:= yv@@27DD
Out[5]= 80, 0, 1, 0, 0, 0<
The 27th sample belongs to class 3.

It is always a good idea to check how many data samples there are from each class.

Look at the distribution of estimation data over the classes. 

In[6]:= NetClassificationPlot@xs, ysD
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Look at the distribution of validation data over the classes. 

In[7]:= NetClassificationPlot@xv, yvD
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12.1.1 VQ Network

First, try a VQ network on the paper data. You need at least one codebook vector for each class, a minimum
of six codebook vectors. More information on the VQ network can be found in Chapter 11, Vector Quantiza-
tion. The result will vary each time the commands are evaluated, due to the random nature of the initializa-
tion and training processes.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << paper.dat;
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Initialize a VQ network with six codebook vectors and train it ten iterations with the Competitive algorithm.

In[4]:= 8vq, fitrecord< = VQFit@xs, ys, 6, 10, Method → CompetitiveD;
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Obtain some information about the trained network.

In[5]:= VQInformation@vqD
Out[5]= VQInformation@VQ@8−Codebook Vectors −<,8CreationDate → 82002, 4, 3, 14, 39, 23<, AccumulatedIterations → 10<DD
The  trained  VQ  network  can  now  be  used  to  classify  paper  samples  by  simply  applying  it  to  new  data
vectors. 

Use the trained VQ network to classify data sample 15 of the validation data.

In[6]:= vq@xs@@15DDD
Out[6]= 880, 0, 1, 0, 0, 0<<
The classification result can also be illustrated using NetPlot. Using NetPlot on a data set with more than
two dimensions produces a bar chart with the correctly classified samples on the diagonal. It is interesting to
compare the classification results of the estimation and validation data.
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Present the classification evaluated using estimation data.

In[7]:= NetPlot@vq, xs, ysD
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Present the classification evaluated using validation data.

In[8]:= NetPlot@vq, xv, yvD
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From  the  plots,  it  is  clear  that  most  samples  were  correctly  classified  by  the  VQ  network,  although  no
perfect classifications were obtained on the validation data. The off-diagonal bars correspond to incorrectly
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classified data and the x and y axes show from which classes they come. Another way to illustrate this is to
use the option Table.

Illustrate the classification on validation data with a table.

In[9]:= NetPlot@vq, xv, yv, DataFormat → TableD
VQ Classification
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2:2
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5:8 6:8

Each box  illustrates  the  data  assigned to  a  class.  For  example,  the  second box  from the left  shows that  six
data samples from class 2 were assigned to the second class. Note that this may turn out differently if  you
repeat the example.

You can also look at how the classification improves  for  each class as a function of the number of training
iterations. In this way you can see if there is a problem with any specific class.

Plot the progress of the classifier on the validation data.

In[10]:= NetPlot@fitrecord, xv, yvD
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The dashed lines indicate incorrectly classified data.
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12.1.2 RBF Network

An RBF network will  be used on the cardboard paper data. RBF networks are often not suitable for use in
high-dimensional problems like this one, which has 15 input dimensions. It  is, however, possible to choose
to use only a subset of the inputs. Choosing a subset of inputs can be seen as a simple form of feature extrac-
tion. To simplify the problem, only four inputs will be used and only four of the paper types will be classi-
fied. The result will vary each time the commands are evaluated due to the random nature of the initializa-
tion and training processes.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << paper.dat;

The data is described in the beginning of Section 12.1, Classification of Paper Quality.

Select input data from sensors 5, 6, 7, and 8, and class data from classes 3 through 6.

In[4]:= x2s = TakeColumns@xs, 85, 8<D;
y2s = TakeColumns@ys, 83, 6<D;
x2v = TakeColumns@xv, 85, 8<D;
y2v = TakeColumns@yv, 83, 6<D;

For classification, it is advantageous to add a sigmoidal nonlinearity at the output of the RBF network. This
constrains the output to the range 0 to 1. Also, a better-conditioned training problem is often obtained if the
linear submodel is excluded.

Initialize the RBF network with six neurons, no linear submodel, and a Sigmoid output nonlinearity.

In[8]:= rbf = InitializeRBFNet@x2s, y2s, 6, OutputNonlinearity→ Sigmoid, LinearPart → FalseD
Out[8]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82003, 9, 19, 8, 14, 50.0479376<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 4<D
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Train the RBF network for 20 iterations.

In[9]:= 8rbf2, fitrecord< = NeuralFit@rbf, x2s, y2s, 20D;
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The trained RBF network can now be used to classify input vectors by applying the network to them.

Classify the 24th paper data sample from the validation data.

In[10]:= rbf2@x2v@@24DDD
Out[10]= 80.163261, 0.164305, 0.106444, 0.562666<
The output of this RBF network is a real-valued function that takes values between 0 and 1. A crisp classifica-
tion can be obtained in various ways. A simple way is to set values larger than 0.5 to 1 and smaller than 0.5
to 0 in the following manner. (Here, True rather than 1 indicates the sample’s class. )

In[11]:= Map@# > 0.5 &, rbf2@x2v@@24DDDD
Out[11]= 8False, False, False, True<
The  classification  can  also  be  displayed  with  a  bar  chart  in  which  the  correctly  classified  data  is  on  the
diagonal  and  the  incorrectly  classified  samples  off  the  diagonal.  A  crisp  classification  can  be  obtained  by
changing the output nonlinearity from the smooth step sigmoid to the discrete step by entering the option
OutputNonlinearity → UnitStep.
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Plot the classification result on the validation data.

In[12]:= NetPlot@rbf2, x2v, y2v, DataFormat → BarChart, OutputNonlinearity→ UnitStepD
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The classification result  is  not  particularly impressive,  but  due to  the randomness in  the initialization, you
may re-evaluate the example, and the result might become better.

Use NetPlot to look at the classification performance improvement during training for each class.

Plot the progress of the classifier on the validation data.

In[13]:= NetPlot@fitrecord, x2v, y2v,
DataFormat → ClassPerformance, OutputNonlinearity → UnitStepD
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You can repeat the example, selecting different components of the input values and different classes for the
output. Because the radial basis functions have local support where they are nonzero, the training often gets
trapped in poor local minima. Quite frequently, one of the classes will be totally misclassified. You will see
this if you re-evaluate the example with a different initialization of the RBF network. Correct classification is
obtained when there is one basis function at each class center. If any of the class centers has not managed to
attract a basis function during the training, then this class will not be correctly classified.
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12.1.3 Feedforward Network

Now try an FF neural network.  As with RBF networks,  a sigmoidal nonlinearity is  added to the output so
that  the  outputs  are  constrained  to  the  interval  0  to  1.  The  result  will  vary  each  time  the  commands  are
evaluated due to the random nature of the initialization and training processes.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << paper.dat;

The data is described at the beginning of Section 12.1, Classification of Paper Quality.

Initialize an FF network without any hidden neurons.

In[4]:= fdfrwrd = InitializeFeedForwardNet@xs, ys, 8<, OutputNonlinearity → SigmoidD
Out[4]= FeedForwardNet@88w1<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 41, 47<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 15<D

Train the initialized network for ten iterations.

In[5]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, xs, ys, 10D;
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The trained network can now be used to classify input vectors by applying the network to them.

358 Neural Networks



Classify sample 27 of the validation data.

In[6]:= fdfrwrd2@xv@@27DDD
Out[6]= 80.112388, 1.58075×10−11, 1., 1.59305×10−7, 0.0000494222, 0.000177795<

A crisp classification is obtained by setting all output values greater than 0.5 to True.

In[7]:= Map@# > 0.5 &, fdfrwrd2@xv@@27DDDD
Out[7]= 8False, False, True, False, False, False<
The 27th sample is correctly classified in class 3.

As  with VQ and RBF networks,  classification with FF networks can also be  illustrated by a  bar chart  with
correctly  classified  data  on  the  diagonal  and  incorrectly  classified  data  on  off-diagonal  bars.  By  choosing
OutputNonlinearity  →  UnitStep  the  sigmoids  at  the  outputs  are  changed  to  a  discrete  step.  This
gives crisp classification.

Plot the classification result on the validation data.

In[8]:= NetPlot@fdfrwrd2, xv, yv, DataFormat → BarChart, OutputNonlinearity → UnitStepD
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Next, plot the classification performance improvement during training for each class.

Plot the progress of the classifier on the validation data.

In[9]:= NetPlot@fitrecord, xv, yv,
DataFormat → ClassPerformance, OutputNonlinearity → UnitStepD
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You can repeat the example using different options for the neural network structure. For example, you can
introduce a layer of hidden neurons. 

Three  types  of  neural  networks  have  been  used  to  classify  the  paper  quality  data:  VQ,  RBF,  and FF  net-
works.  What  conclusion  can  you  draw  from  the  comparison?  As  mentioned  before,  RBF  networks  often
have  problems  with  local  minima,  especially  if  the  dimension  of  the  input  space  is  high.  To  reduce  this
problem,  only  three  of  the  available  15  dimensions  were  used.  Of  course,  when  12  dimensions  are
neglected,  there  is  a  danger  that  the  remaining  three  dimensions  do  not  contain  enough  information  to
separate the classes. Therefore, RBF nets are not very good for this problem. 

An  FF  network  also  may  have  problems  with  local  minima,  especially  if  you  change  the  network  and
include  a  hidden  layer,  but  these  problems  are  not  as  severe  as  for  the  RBF  network.  You  can  test  for
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problems by re-evaluating the example a few times. Though the VQ does not have any problems with local
minima in  this  example,  it  may with  other  data.  It  is  hard to  say  which classifier  is  the  best,  but  the  VQ
network was the easiest one to train.

12.2 Prediction of Currency Exchange Rate

In  this  example,  data  consist  of  the  daily exchange  rates  of  the  British pound and the  German mark com-
pared to the U.S. dollar from the beginning of 1987 to the end of 1997. 

The  data  was  contributed  by  Agustin  Leon,  Quantitative  Research,  Rotella  Capital  Management,  whose
contribution is gratefully acknowledged.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << currency.dat;

Two time series  have now been loaded.  The variable  ybr  contains the  exchange rate  for  the  British pound,
and ydeu contains the rate for the German mark.

Check the time-series dimensions.

In[4]:= Dimensions@ybrD
Dimensions@ydeuD

Out[4]= 82856, 4<
Out[5]= 82849, 4<
Exchange rates from approximately 2850 days are available. There are four rates given for each day, repre-
senting the opening, high, low, and closing prices.

First concentrate on the German mark.
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Plot the high price of the German mark versus the day number.

In[6]:= ListPlot@Flatten@TakeColumns@ydeu, 82<DDD
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Suppose you want to predict the opening price using the exchange rates from the previous day. Therefore,
the opening price is defined as the output of the process, which will be stored in y, and the three other rates
are defined as inputs and will be stored in u.

Divide the columns into input and output.

In[7]:= u = TakeColumns@ydeu, 82, 4<D;
y = TakeColumns@ydeu, 81<D;

The predictor model can be described by the following equation:

(1)ŷ HtL = g Hθ, x HtLL
Here  ỳ HtL  is  the  prediction of  the  output  yHtL,  the  function  g  is  the  neural  network  model,  q  represents  the
parameters of the model, and x(t) is the model’s regressor. The regressor is given by the following equation:

(2)x HtL = @y Ht − 1L u1 Ht − 1L u2 Ht − 1L u3 Ht − 1LDT
To have a fair test of the predictor, the data set is divided into training data and validation data. The second
data set  will  be  used to  validate and compare the  different  predictors.  The following commands write  the
training data into matrices ue and ye and the validation data into uv and yv.
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Divide the data into training and validation data.

In[9]:= ue = u@@Range@1000DDD;
ye = y@@Range@1000DDD;
uv = u@@Range@1001, 2000DDD;
yv = y@@Range@1001, 2000DDD;

NeuralARX is the appropriate neural model for this problem. Such a network is initialized and estimated by
the command NeuralARXFit  as described in Chapter 8, Dynamic Neural Networks. First, a linear predic-
tor model will be estimated. To find this prediction, choose FeedForwardNet  without hidden neurons. To
obtain the  regressor in  the form Equation 12.2,  the regressor  indices have to be chosen as follows: na = 81<,
nb = 81, 1, 1<, and nk = 81, 1, 1<.

Estimate a linear model for the currency prediction.

In[13]:= 8model1, fitrecord< = NeuralARXFit@ue, ye,881<, 81, 1, 1<, 81, 1, 1<<, FeedForwardNet, 8<, CriterionPlot → FalseD;
NeuralFit::LS :  

The model is linear in the parameters. Only one training iteration is necessary
to reach the minimum. If no training iteration was performed, it is
because the fit was completed during the initialization of the network.

A linear model is just a linear combination of the regressor components and a DC-level parameter; that is, a
linear model in Equation 12.1 can be expressed as

(3)ŷ HtL = a1 y Ht − 1L + b1 u1 Ht − 1L + b2 u2 Ht − 1L + b3 u3 Ht − 1L + b4

If you look at the parameters of the trained model, you see that b3 is close to 1 and the rest of the parameters
are close to 0. This means that the opening exchange rate is most closely correlated with the closing rate of
the day before. This seems to be a very natural feature and you can, therefore, have some faith in the model.

In[14]:= model1@@1DD@8yy@t − 1D, u1@t − 1D, u2@t − 1D, u3@t − 1D<D
Out[14]= 80.00367334 − 0.0142261 u1@−1 + tD −

0.00706428 u2@−1 + tD + 1.02698 u3@−1 + tD − 0.00762763 yy@−1 + tD<
Before a nonlinear model is trained on the data, the one-step prediction on the validation data is evaluated.
Since  the  market  is  changing  with  time,  the  prediction  is  evaluated  only  on  the  100  days  following  the
estimation data.
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Evaluate the one-step prediction on validation data.

In[15]:= NetComparePlot@uv, yv, model1, PredictHorizon → 1, ShowRange → 84, 100<D
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The  plot  shows  the  predicted  rate  together  with  the  true  rate.  The  two  curves  are  so  close  that  you  can
hardly see any difference between them. The RMSE of the prediction is also given, and you can also use it as
a measure of the quality of the predictor.

It  is  now time to try nonlinear models to see if  they can predict  better  than the linear one.  An FF network
with two hidden neurons is chosen. The regressor chosen is the same as for the linear model. A linear model
is  included in parallel  with the  network.  Because  the  validation data  is  included in  the  following training,
the estimate is obtained with stopped search.

Train an FF network with two neurons on the exchange rate data.

In[16]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 881<, 81, 1, 1<, 81, 1, 1<<,
FeedForwardNet, 82<, uv, yv, 5, LinearPart → True, Separable → FalseD;
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NeuralFit::StoppedSearch :  

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 0th training iteration.
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The  improvement  of  the  neural  network  during  the  training is  very  small  because  the  initialization  of  the
network uses least-squares to fit the linear parameters.

Compute the one-step prediction on the same data interval used for the linear model.

In[17]:= NetComparePlot@uv, yv, model2, PredictHorizon → 1, ShowRange → 84, 100<D
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The RMSE is slightly lower for the nonlinear model than for the linear one. Thus, the prediction is slightly
better.  It  is  typical  for  the  improvement  of  economic  data  to  be  small.  Otherwise,  it  would  be  too  easy  to
make money.

Now consider an RBF network. Keep the same arguments used for the FF network, except change to an RBF
network with two neurons.
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Initialize and train an RBF network on the exchange rate data.

In[18]:= 8model3, fitrecord< = NeuralARXFit@ue, ye,881<, 81, 1, 1<, 81, 1, 1<<, RBFNet, 2, uv, yv, 8, Separable → FalseD;
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NeuralFit::StoppedSearch :  

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 6th training iteration.

The  performance  of  the  RBF  network  on  validation  data  became  worse  during  the  training,  causing  the
initialized RBF network to be returned.

Evaluate the one-step prediction with the RBF network.

In[19]:= NetComparePlot@uv, yv, model3, PredictHorizon → 1, ShowRange → 84, 100<D
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The  RBF  network  is  slightly  better  than  the  linear  network,  but  not  as  good  as  the  FF  network.  If  you
re-evaluate the example, the result might change slightly due to the randomness in the initialization.

You can repeat the example changing several options, such as the following:

   è  Change the number of neurons.

   è  Change the regressor to contain more past values.

   è  Exclude some of the input signals from the regressor.

You  can  also  change  the  data  interval  used  in  the  training  and  in  the  validation.  Also,  try  to  predict  the
British pound instead of the German mark.

The  example  illustrates  that  it  is  possible  to  predict  the  opening  exchange  rate  using  the  rates  from  the
previous  day.  The  relationship  is  obviously  nonlinear,  since  the  nonlinear  models  based  on  FF  and  RBF
networks performed slightly better than the linear model.
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13 Changing the Neural Network Structure

The  three  sections  in  this  chapter  describe  how  you  can  modify  a  network  structure.  The  first  section
describes  how to  change the  parameter values  in  an existing network or  remove a  neuron.  The remaining
two sections apply only to RBF and FF networks. These sections explain how to obtain special model struc-
tures by fixing some parameters at predefined values during the training and specifying the neuron activa-
tion function.

13.1 Change the Parameter Values of an Existing Network

This section describes how you can change a neural network by changing the values of the numerical parame-
ters. You will need to do this if, for example, you want to implement your own training algorithms and then
insert the parameters into an existing network. 

The following subsections explain how to change each type of network available in Neural Networks,  except
for  the  perceptron  and  the  Hopfield  network.  Changing  the  parameters  of  the  perceptron  and  Hopfield
network is straightforward, considering their storage format described in Section 4.1.1, InitializePerceptron,
and Section 9.1.1, HopfieldFit.

13.1.1 Feedforward Network

First, consider the way in which network parameters are stored. FF networks are stored in objects with head
FeedForwardNet.  These  objects  consist of  two components as described in Section 3.2,  Package Conven-
tions. The first component contains the parameters and the second component is a list of rules.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Initialize an FF network with two inputs, two outputs, and one hidden layer containing four neurons. This is
done by indicating the number of inputs and outputs with matrices of the appropriate size; that is, without
using any data. A linear submodel is included in parallel with this example network. The additional parame-
ters for the submodel are placed in the variable c in the first component of the network.



In[2]:= fdfrwrd = InitializeFeedForwardNet@8Range@2D<,8Range@2D<, 84<, LinearPart → True, RandomInitialization→ TrueD
Out[2]= FeedForwardNet@88w1, w2<, χ<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 55, 29<,
OutputNonlinearity → None, NumberOfInputs → 2<D

This  FF network  can be  described  by the  following equation. This  matrix  description of  the  FF network is
more  compact  than the  description in Section  2.5.1,  Feedforward  Neural  Networks,  and makes  it  easier  to
explain the parameter storage.  The input vector  x  is  augmented with a unit component to include the bias
parameters in the same way as the rest of the parameters. Also the output from the hidden layer is described
as a vector and augmented with a unit component.

(1)ŷ = @σ H@x 1D w1L 1D w2 + xχ

The matrices wi are specified by the following two rules:

   è  There is one column for each output of a layer.

   è  There is one row for each input to a layer and an additional row for the bias parameters, indicated by 
b in Section 2.5.1, Feedforward Neural Networks.

The  linear  part  is  described  by  the  matrix  c,  containing  one  row  for  each  input  and  one  column for  each
output. The last term only exists if the network contains a linear part.

This description holds for FF networks with any number of hidden layers. You just iterate the rules for each
layer.

In  the  example,  w1  has  three  rows and four  columns since  there  are  two inputs  and one  bias  in  the  input
layer and four neurons in the hidden layer. The second matrix w2  has two columns and five rows since the
model has two outputs and four hidden neurons along with the associated bias.

Using this description of the storage format, it is easy to insert your own parameter values. In general, create
the matrices wi and c, if you have a linear submodel. Then, put all these matrices in a list 88w1, w2, ... wn<, c<
and place it in the first position of the FF object.

You can also change values of a subset of the parameters in the network model. This is done by manipulat-
ing  the  corresponding  element  in  the  network  structure.  Here  is  an  example  of  a  safe  way  to  change  an
element.
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Extract the matrices.

In[3]:= 88w1, w2<, χ< = fdfrwrd@@1DD;
Look at the first matrix.

In[4]:= MatrixForm@w1D
Out[4]//MatrixForm=ikjjjjjjj 0.799754 0.722728 −0.0949863 −0.823133

−0.388832 0.272681 −0.200368 −0.254374
0.41106 −0.0473895 0.114941 0.873398

y{zzzzzzz
Suppose  you want  to  set  the  parameters  in  the  third column to zero  so  that  the  input  to  the  third neuron
becomes zero—that is, independent of the input to the network. This is done as follows.

In[5]:= w1 = w1 ê. 8a_, b_, c_, d_< → 8a, b, 0, d<;
MatrixForm@w1D

Out[6]//MatrixForm=ikjjjjjjj 0.799754 0.722728 0 −0.823133
−0.388832 0.272681 0 −0.254374
0.41106 −0.0473895 0 0.873398

y{zzzzzzz
You can now  insert  the  changed  matrix  w1,  along  with  the  rest  of  the  unchanged parameters,  into  the  FF
network model.

Insert the changes into the model.

In[7]:= fdfrwrd@@1DD = 88w1, w2<, χ<;
13.1.2 RBF Network

First, investigate the storage format of the network. RBF networks are stored in objects with head RBFNet.
The  first  component  contains  the  parameters  and  the  second  component  is  a  list  of  rules,  as  discussed  in
Section 3.2, Package Conventions.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`
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Initialize  an  RBF network  with  three  inputs,  two  outputs,  and five  neurons.  This  is  done  by  initializing a
network with matrices of the appropriate size without any data.

Initialize an RBF network with five neurons.

In[2]:= rbf = InitializeRBFNet@8Range@3D<, 8Range@2D<, 5, RandomInitialization→ TrueD
Out[2]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 55, 49<,
OutputNonlinearity → None, NumberOfInputs → 3<D

The  variables  w1,  λ,  w2,  and c  contain  the  parameters.  Compare  this  to  Figure  2.7  in  Section  2.5.2,  Radial
Basis Function Networks.

The RBF network can be described using the following matrix form that is comparable to the description in
Section 2.5.2, Radial Basis Function Networks. Here, G is the basis function.

(2)ŷ = @G Hλ2 » x − w1 »2L 1D w2 + xχ

Parameter storage is explained by the following rules:

   è  w1 is a matrix with a center of a basis function in each column.

   è  l is a vector with one component describing the width of the basis function for each neuron.

   è  w2 is a matrix with one column for each output of the network. The last row contains the bias parame-
ters. 

   è  c is a matrix with one column for each output of the network and one row for each network input.

Retrieve some information about the RBF network.

In[3]:= NetInformation@rbfD
Out[3]= Radial Basis Function network. Created 2002−4−3 at 14:

55. The network has 3 inputs and 2 outputs. It consists of 5
basis functions of Exp type. The network has a linear submodel.

The values of the parameters can be changed by modifying the corresponding element in the network object.
To do this safely, follow the idea described in Section 13.1.1, Feedforward Network.
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13.1.3 Unsupervised Network

Consider the case that you want to change the parameters in unsupervised networks.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

The  procedure  is  demonstrated  on an  unsupervised  network  with  two inputs  and four  codebook vectors.
Instead  of  submitting  input  data  when  initializing  the  network,  enter  a  row  matrix  where  the  number  of
components equals the number of inputs.

Initialize an unsupervised network.

In[2]:= unsup = InitializeUnsupervisedNet@8Range@2D<, 4D
Out[2]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 56, 3<,

AccumulatedIterations → 0, SOM → None, Connect → False<D
Retrieve information about the network.

In[3]:= NetInformation@unsupD
Out[3]= Unsupervised network with 4 codebook vectors. Takes

data vectors with 2 components. Created 2002−4−3 at 14:56.

The first component of the model is a list of four codebook vectors.

Look at the codebook vectors.

In[4]:= unsup@@1DD êê MatrixForm

Out[4]//MatrixForm=i
k
jjjjjjjjjjj

3.30475 3.73196
−0.163529 3.10258
1.19623 3.13703
0.357123 1.18737

y
{
zzzzzzzzzzz

There  is  one  codebook  vector  on  each  row  of  the  matrix.  You  may  modify  the  values  of  the  vectors  by
changing the corresponding elements of the matrix and inserting the modified matrix on the first position in
the network.
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13.1.4 Vector Quantization Network

Because a VQ network’s codebook vectors are divided into several classes, it is slightly more complicated to
change  the  parameters  in  a  VQ  network  than  it  is  to  change the  parameters  in  an  unsupervised  network.
This is explained next.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

In this example, a VQ network with two inputs, two classes, and six codebook vectors is used.

Initialize a VQ network with six codebook vectors.

In[2]:= vq = InitializeVQ@Table@Range@2D, 81<D, Table@0, 81<, 82<D, 6D
Out[2]= VQ@8−Codebook Vectors −<,8CreationDate → 82002, 4, 3, 14, 56, 15<, AccumulatedIterations → 0<D

View some information about the network.

In[3]:= NetInformation@vqD
Out[3]= VQ network for 2 classes with 83, 3< codebook vectors per class, altogether

6. It takes data vectors with 2 components. Created 2002−4−3 at 14:56.

The  six  codebook vectors  are  divided  between the  two classes,  so  that  three  codebook vectors  are  used to
explain the data in each class. The codebook vectors are contained in the first element of the network. 

Look at the codebook vectors.

In[4]:= vq@@1DD
Out[4]= 8880.759012, 0.0104138<, 80.381793, −0.387363<, 8−0.042416, 2.56475<<,881.80341, 1.3081<, 80.933643, 2.53618<, 85.04324, 1.13064<<<
You may modify any codebook vector by giving new numerical values to the corresponding parameters in
this structure. Then you insert it at the first position of the network.
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If you are interested in a particular class, you can extract the codebook vectors of that class and display them
as a matrix.

Look at the codebook vectors of the second class.

In[5]:= vq@@1, 2DD êê MatrixForm

Out[5]//MatrixForm=ikjjjjjjj 1.80341 1.3081
0.933643 2.53618
5.04324 1.13064

y{zzzzzzz
There  is  one  codebook  vector  on  each  row  of  the  matrix.  You  may  modify  the  values  of  the  vectors  by
changing  the  corresponding  elements  of  the  matrix  and  inserting  the  modified  matrix  on  the  appropriate
position in the network.

13.2 Fixed Parameters

For  FF  and  RBF  networks,  you  can  modify  the  network  structure  by  setting  some  of  the  parameters  to
predefined values. Then you can exclude the predefined parameters from the training with the FixedParamg
eters option. These parameters will maintain their defined values during the training; thus, fewer parame-
ters are adapted to the data.  This might be good from a bias-variance tradeoff perspective,  as described in
Section 7.5, Regularization and Stopped Search. 

In some problems, you might know that the dependence is linear with respect to some inputs but nonlinear
with respect  to  other inputs.  The following example demonstrates how this characteristic  can be built  into
the  neural  network  model  so  that  no  more  parameters  than  necessary  have  to  be  estimated.  A  more
advanced example can be found in Section 8.2.5, Fix Some Parameters—More Advanced Model Structures.

The default of the FixedParameters option is None, which means that all parameters are trained. You can
set FixedParameters  to a list of integers specifying the parameters to hold fixed during the initialization
of the network. You can also fix parameters when training with NeuralFit. A specification of FixedParamg
eters  at the training stage overrides any earlier specification at initialization. The information about fixed
parameters is stored in the network model. If you want to train all parameters at a later stage, you must give
the option FixedParameters → None.

The  fixed  parameters  are  indicated  by  their  position  in  the  flattened  parameter  structure  of  the
network—that is, the position in the list Flatten[net[[1]]], where net is an FF or RBF network model.
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Suppose you know, through physical insight or just by assumption, that the unknown function looks some-
thing  like  the  following,  where  f  is  an  unknown  nonlinear  function  and  a  is  an  unknown  constant.  This
problem has two inputs and one output.

(3)y = f Hx1L + a x2

Therefore, you know that the function is linear in the second input x2. If the model is specified to be linear in
x2 from the beginning, then the training should produce a better model.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

The next two steps produce data from a function of the form shown in Equation 13.3.

Obtain a “true” function.

In[2]:= trueFunction = Function@ArcTan@Abs@#1^4DD + 0.5 #2D
Out[2]= ArcTan@Abs@#14DD + 0.5 #2 &
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Generate data and plot the output.

In[3]:= Ndata = 20;
x = 4∗

Flatten@Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D, 1D − 2;
y = Apply@trueFunction, x, 1D;
Plot3D@trueFunction@x1, x2D, 8x1, −2, 2<, 8x2, −2, 2<D
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From the plot, it is evident that the true function is linear in one of the inputs. 

Now, only the  data and the  knowledge that the  true function is  linear  in  the second input will  be used to
develop an FF  network  model.  A linear  part  must  be  included in  the  model.  This  is  done with the  option
LinearPart.

Initialize an FF network including a linear part.

In[7]:= fdfrwrd =

InitializeFeedForwardNet@x, y, 82<, RandomInitialization→ True, LinearPart → TrueD
Out[7]= FeedForwardNet@88w1, w2<, χ<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 56, 39<,
OutputNonlinearity → None, NumberOfInputs → 2<D

The nonlinear dependence of the second input has to be removed. This is accomplished by setting its compo-
nents  in  the  w1  matrix  to  zero.  The  position  of  the  w1  matrix  in  the  network  model  is  evident  from  the
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previous output. Also consult the figures and the description of the w1 matrix in Section 2.5.1, Feedforward
Neural Networks.

View the matrix w1.

In[8]:= w1 = fdfrwrd@@1, 1, 1DD
Out[8]= 88−0.641267, 0.170774<, 8−0.119565, 0.494298<, 80.651846, 0.201474<<
The first row is the dependence on the first input x1, the second row is the dependence on the second input
x2, and the third row contains the bias parameters. It is the second row that has to be set to zero. This can be
done in two steps. First, the position of the row is identified.

Find the position of the second row of w1.

In[9]:= pos = Position@fdfrwrd@@1DD, w1@@2DDD
Out[9]= 881, 1, 2<<
Next, the elements of the second row are set to zero.

Set the second row of w1 to zero.

In[10]:= fdfrwrd = ReplacePart@fdfrwrd, 80, 0<, Flatten@81, pos<DD
Out[10]= FeedForwardNet@88w1, w2<, χ<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 56, 39<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Whenever  you  manipulate  the  parameters  directly,  it  is  wise  to  check  that  the  structure  of  the  parameter
part of the network has been changed correctly.

Check that the manipulation is correct.

In[11]:= fdfrwrd@@1DD
Out[11]= 8888−0.641267, 0.170774<, 80, 0<, 80.651846, 0.201474<<,88−0.0517033<, 80.792547<, 80.273493<<<, 88−1.04737<, 8−0.103775<<<
Only  the  second  row  of  w1,  now  set  to  0,  has  changed.  For  the  parameters  to  remain  0,  they  have  to  be
excluded from the training. This is done by using the option FixedParameters.
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To find the parameter numbers to be held fixed, search for the 0 in the parameter structure.

Find the parameters to be fixed and assign them to a variable.

In[12]:= fixparameters = Flatten@Position@Flatten@fdfrwrd@@1DDD, 0DD
Out[12]= 83, 4<
Now the initialized FF network is ready to be trained. The two parameters to be held fixed are indicated in
the FixedParameters option.

Train the network with some fixed parameters.

In[13]:= 8fdfrwrd2, fitrecord< =

NeuralFit@fdfrwrd, x, y, 40, FixedParameters → fixparametersD;
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Check that the two parameters have not changed.

In[14]:= fdfrwrd2@@1DD
Out[14]= 8888−5.05883, −5.51404<, 80, 0<, 84.93321, −5.41119<<,88−1.60494<, 81.43627<, 81.56832<<<, 88−0.0476594<, 80.5<<<
The second row of w1 is still {0,0}. The fact that some parameters were fixed in the training is now speci-
fied as a rule in the second argument of the network object.
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Fixed parameters are indicated as a rule in the network.

In[15]:= fdfrwrd2

Out[15]= FeedForwardNet@88w1, w2<, χ<, 8AccumulatedIterations → 27,
CreationDate → 82002, 4, 3, 14, 56, 46<, Neuron → Sigmoid,
FixedParameters → 83, 4<, OutputNonlinearity → None, NumberOfInputs → 2<D

If  you  submit  the  network  fdfrwrd2  to  NeuralFit  again  for  more  training  iterations,  then  the  fixed
parameters  do  not  have  to  be  specified  because  they  are  already indicated  in  the  network.  If  you want  to
change the fixed parameters, simply indicate the new set of fixed parameters in the call to NeuralFit. This
will override any specification in the initial model.

Complete this example with a plot of the estimated function. If  you repeat the training without forcing the
network to  be  linear  in  one  direction,  then  the  plot  of  the  estimated function  will  probably  not  match the
defined function as well as the following plot.

In[16]:= NetPlot@fdfrwrd2, x, yD
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13.3 Select Your Own Neuron Function

The  symbolic  computation capability  of  Mathematica  allows you to  specify  the  neuron activation functions
for  RBF  and  FF  networks.  The  Neural  Networks  package  then  uses  standard  Mathematica  commands  to
compute  the  derivative,  and  the  expression  is  optimized  before  the  numerical  computation  begins  in  the
training.

13.3.1 The Basis Function in an RBF Network

The Gaussian function is the most commonly used basis function in RBF networks. There is, however, no a
priori  reason for  this  choice,  and you may use the Neuron  option in the  initialization to define a different
basis function.

Recall that a general RBF network with nb basis functions is described by the following equation.

(4)ŷ HθL = ‚
i=1

nb

wi
2 G I−λi2 Hx − wi1L2M + b

In addition to this expression, you also may have a parallel linear part as described in Section 2.5.2, Radial
Basis Function Networks. The default value of G(x) is Exp so that the Gaussian function is obtained.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Look at the default basis function.

In[2]:= Plot@Exp@−x2D, 8x, −3, 3<, PlotRange → AllD
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Another  possible  choice  for  the  basis  function  is  one  that  decays  linearly  with  the  distance  from the  basis
center.  Such a  choice can be obtained with the help of  the SaturatedLinear  function. Notice that G  is  a
function  of  the  distance  squared  in  Equation  13.4.  To  make  the  basis  function  linear  with  respect  to  the
distance,  you must  compensate for  this  square by introducing a  square root.  This is  done in the following
example. 

Plot a linear saturated basis function.

In[3]:= Plot@SaturatedLinear@Sqrt@x2DD, 8x, −3, 3<, PlotRange → AllD
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Since a layer of linear parameters is included in the network, in w2 , it does not matter that the basis function
is inverted.

Now use this basis function in a small example.

Generate data and plot the function.

In[4]:= Ndata = 10;
x1 = Table@N@8i êNdata, jê Ndata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y1 = Map@Sin@10. #@@1DD #@@2DDD &, x1, 82<D;
ListPlot3D@y1D;
x = Flatten@x1, 1D;
y = Transpose@8Flatten@y1D<D;
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Initialize an RBF network with the proposed basis function.

In[10]:= rbf = InitializeRBFNet@x, y, 3, Neuron → Function@x, SaturatedLinear@Sqrt@−xDDDD
Out[10]= RBFNet@88w1, λ, w2<, χ<,8Neuron → Function@x, SaturatedLinear@è!!!!!!!−x DD, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 57, 17<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Notice that a negative sign was used inside the square root to compensate for the negative sign in the func-
tion defined by Equation 13.4.

Train the RBF network using the data.

In[11]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 20D;
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Plot the result.

In[12]:= NetPlot@rbf2, x, y, DataFormat → FunctionPlotD
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You can vary the number of basis functions and repeat the example. You can also try different types of basis
functions.

13.3.2 The Neuron Function in a Feedforward Network

You can set  the  neuron activation function to any smooth function.  Some of  the commonly used functions
are demonstrated here.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Sigmoid is the default activation function.

(5)Sigmoid@xD =
1

cccccccccccccccc
1 + e−x
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Plot the sigmoid.

In[2]:= Plot@Sigmoid@xD, 8x, −7, 7<D
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The sigmoid function is also recommended as the output of an FF network when you work on classification
problems. Setting OutputNonlinearity → Sigmoid  during initialization of an FF network will set  the
output  of  the  network  to  Sigmoid.  Sigmoid  is  used  because  it  saturates  to  zero  or  one,  which  are  the
values used to indicate membership in a class. See Section 3.2 Package Conventions.

Another common choice of activation function is the hyperbolic tangent function.

(6)Tanh@xD =
ex − e−x
ccccccccccccccccccc
ex + e−x

Plot the hyperbolic tangent.

In[3]:= Plot@Tanh@xD, 8x, −7, 7<D
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The  hyperbolic  tangent  and  sigmoid  functions  are  equivalent  when  used  in  the  hidden  neurons  because
there  is  a  similarity transformation for  the  parameters  that  takes an FF  network with one of  the  activation
functions to the other. It does, however, make a difference which function you apply to the output with the
OutputNonlinearity option.

An interesting alternative neuron function is the saturated linear activation function. It is linear between -1
and 1 but saturates at these values for large positive or negative numbers.

Plot the SaturatedLinear function.

In[4]:= Plot@SaturatedLinear@xD, 8x, −3, 3<D
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This activation function gives a local linear model that might be of interest in many situations.

Another possibility is the inverse tangent function.
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Plot the inverse tangent.

In[5]:= Plot@ArcTan@xD, 8x, −7, 7<D
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The following demonstrates the use of the SaturatedLinear function in an FF network model.

Generate data and plot the actual function to be modeled.

In[6]:= Ndata = 10;
x1 = Table@N@8i êNdata, jê Ndata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y1 = Map@Sin@10. #@@1DD #@@2DDD &, x1, 82<D;
ListPlot3D@y1D;
x = Flatten@x1, 1D;
y = Transpose@8Flatten@y1D<D;
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Initialize an FF network with the SaturatedLinear activation function.

In[12]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<, Neuron → SaturatedLinearD
Out[12]= FeedForwardNet@88w1, w2<<, 8Neuron → SaturatedLinear, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 57, 50<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Fit the FF network to the data.

In[13]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 30D;
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Plot the result.

In[14]:= NetPlot@fdfrwrd2, x, y, DataFormat → FunctionPlotD
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The approximation obtained is locally linear, due to the special choice of activation function.

Try repeating this example with the other common functions. Edit the notebook and repeat the evaluations.

13.4 Accessing the Values of the Neurons

You might want to access the output values of the neurons from an FF or RBF network. If  you just want a
plot of the values, use NetPlot  with the option DataFormat → HiddenNeurons.  More direct  access to
the neuron values can be achieved by creating a second network with a slightly changed network structure,
as shown in the following two examples.

13.4.1 The Neurons of a Feedforward Network

Load the Neural Networks package and some test data.

In[1]:= << NeuralNetworks`
<< one2twodimfunc.dat;

Initialize an FF network with four hidden neurons.

In[3]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<D
Out[3]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 33<,
OutputNonlinearity → None, NumberOfInputs → 1<D

View the network information.

In[4]:= NetInformation@fdfrwrdD
Out[4]= FeedForward network created 2002−4−3 at 14:58. The

network has 1 input and 2 outputs. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

This network has two outputs. 

In general, an FF network has the following structure:

(7)ŷ = @σ H@x 1D w1L 1D w2
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To gain access  to  the  output  of  the  hidden neurons,  you must  turn  them into the  outputs  of  the  network.
This can be done using NeuronDelete  to  remove all  the outputs  of  the network. The outputs  of the new
network will  be  the  neurons of  the  hidden layer  of  the original network. This  means that  the matrix  w2  is
removed.  Consult  Figures  2.5  and  2.6  in  Section  2.5.1,  Feedforward  Neural  Networks,  to  understand  the
equivalence of w2  and the output layer. After the output layer is removed, the network is described by the
following equation:

(8)ŷ = Sigmoid H@x 1D w1L
The following command removes the output layer from the example network.

Remove the last layer of the network.

In[5]:= newfdfrwrd = NeuronDelete@fdfrwrd, 882, 1<, 82, 2<<D
NeuronDelete::NewOutputLayer :  

All outputs have been deleted. The second−to−last layer becomes the new output.

Out[5]= FeedForwardNet@88w1<<, 8Neuron → Sigmoid, FixedParameters → None,
AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 33<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 1<D

In[6]:= NetInformation@newfdfrwrdD
Out[6]= FeedForward network created 2002−4−3 at 14:

58. The network has 1 input and 4 outputs. It has no hidden
layer. There is a nonlinearity at the output of type Sigmoid.

As  predicted,  the  new  network  has  four  outputs  and  no  hidden  layer.  The  four  hidden  neurons  outputs
have become the outputs of the modified network.

The new FF network can now be applied to the data.

Values of the neurons when the network is applied to input data {0.5}.

In[7]:= newfdfrwrd@80.5<D
Out[7]= 89.25426× 10−6, 0.978406, 0.99999, 0.999998<
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The  technique  just  described  can  also  be  used  when  you  work  with  several  hidden  layers.  To  access  the
values of the hidden neurons in a specific  layer,  you must first turn this layer into an output layer. This is
done by removing all layers of neurons after the one of interest to you.

13.4.2 The Basis Functions of an RBF Network

To access  the  values of  the  basis  functions of  an RBF network  is  slightly more  complicated than for  an FF
network since the output layer cannot be removed. Instead, you can change the output layer to an identity
mapping. This is described here.

Load the Neural Networks package and a Mathematica standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

Load some test data.

In[3]:= << one2twodimfunc.dat;

Initialize an RBF network with four hidden neurons.

In[4]:= rbf = InitializeRBFNet@x, y, 4D
Out[4]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 52<,
OutputNonlinearity → None, NumberOfInputs → 1<D

It is convenient to express the RBF network using a less formal matrix notation:

(9)ŷ = @G Hλ2 » xT − w1 »2L 1D ⋅ w2 + x ⋅ χ

First  the  distances  between  the  input  vector  x  and  each  column  of  w1  are  computed.  These  distances  are
multiplied  with  the  square  of  their  corresponding  width  in  the  vector  l  before  the  basis  function  G  is
mapped over the vector. This forms the output of the hidden layer. A unit DC-level component is appended
to  the  output  of  the  hidden  layer,  and  an  inner  product  with  w2  gives  the  first  term  of  the  output.  The
second  term  is  the  linear  submodel  formed  as  an  inner  product  between  the  inputs  and  the  parameter
matrix c.

You can access the values of the basis functions by changing the matrix w2 to an identity matrix with dimen-
sion equal to the number of neurons plus a row of zeros for the DC-level parameters. You will then obtain a
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new RBF network with one output for each neuron. Also, if the original RBF network has a linear part, the
linear part must be removed, and this can be done with NeuronDelete.

Check the number of neurons.

In[5]:= NetInformation@rbfD
Out[5]= Radial Basis Function network. Created 2002−4−3 at 14:

58. The network has 1 input and 2 outputs. It consists of 4
basis functions of Exp type. The network has a linear submodel.

There are four neurons and this is the dimension of the identity mapping that is inserted.

Add a new matrix for w2.

In[6]:= rbf@@1, 1, 3DD = AppendColumns@IdentityMatrix@4D, 880, 0, 0, 0<<D
Out[6]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<, 80, 0, 0, 0<<

Delete the linear part.

In[7]:= rbf = NeuronDelete@rbf, 80, 0<D
Out[7]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 52<,
OutputNonlinearity → None, NumberOfInputs → 1<D

The  newly  obtained  RBF  network  can  be  evaluated  on  input  data.  The  output  will  be  the  values  of  the
neurons of the original RBF network. Therefore, there will be one output for each neuron.

Check the values of the neurons for a numerical input value.

In[8]:= rbf@84.1<D
Out[8]= 80.216709, 0.976699, 0.608883, 0.527926<
You can also plot the value of a single neuron.
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Plot the fourth neuron.

In[9]:= Plot@rbf@8x<D@@4DD, 8x, 0, 7<D
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DataMapArray
NetPlot, perceptron network, 58
NetPlot, unsupervised network, 267
NetPlot, VQ, 318

DeleteSOM, 265
Discrete, Hopfield, 234
Dynamic models, 8
Dynamic neural networks, 187
 
Energy, NetPlot, Hopfield network, 236
ErrorDistribution
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

 
FeedForwardNet, 80
FixedParameters
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
NeuralFit, 150

Function approximation, 7
FunctionPlot
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

 
Gauss-Newton, 155
Gauss-Newton, 23
GaussNewton, NeuralFit, 155
 
HiddenNeurons
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

Hopfield, 233
Hopfield networks, 233
HopfieldEnergy, 235
HopfieldFit, 233
 
InitialInput, dynamic network, 192
Initialization, FF network, 82
InitializeFeedForwardNet, 80
InitializePerceptron, 54
InitializeRBFNet, 119
InitializeUnsupervisedNet, 253



InitialOutput, dynamic network, 192
InitialRange
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
InitializeVQ, 309, 311

 
Kohonen networks 9, 32, 253
 
Learning Vector Quantization 1, 314
Levenberg-Marquardt, 23
Levenberg-Marquardt, NeuralFit, 153
Linear models, 12
LinearizeNet

dynamic network, 195
FF network, 87
RBF network, 122

LinearParameters
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

LinearPart
InitializeFeedForwardNet, 81
InitializeRBFNet, 120

LVQ1, 314
 
MakeRegressor, dynamic network, 197
Method
NeuralFit, 151
VQFit, 314

MinIterations, NeuralFit, 151
Momentum, NeuralFit, 151
MoreTrainingPrompt, 177
Multilayer networks, 19
MultiplePrediction, dynamic network, 192
 
Neighbor
UnsupervisedNet, 255
UnsupervisedNetFit, 258

NeighborStrength
UnsupervisedNet, 255
UnsupervisedNetFit, 258

NetClassificationPlot, 42
NetComparePlot, dynamic network, 194
NetInformation

dynamic network, 190
FF network, 84
Hopfield network, 235
perceptron network, 56
RBF network, 122
unsupervised network, 264
VQ, 315

NetOutput, NetPlot, FF and RBF networks, 86
NetPlot

dynamic network, 195
FF and RBF networks, 85
Hopfield network, 235
perceptron network, 57
unsupervised network, 266
VQ, 317

NetPredict, dynamic network, 191
NetPredictionError, dynamic network, 192
NetSimulate, dynamic network, 193
NetType, HopfieldFit, 234
Neural network

data format, 37
network format, 40

NeuralARFit, 189
NeuralARX, 188
NeuralARXFit, 188
NeuralD, 89
NeuralFit, 149

FF network, 83
NeuralFitRecord, 150, 181
Neuron
HopfieldFit, 234
InitializeFeedForwardNet, 81
InitializeRBFNet, 120

NeuronDelete
FF network, 87
RBF network, 123
unsupervised network, 264
VQ, 317

Neuron function, 381
NNModelInfo, 89
NumberOfInputs, 80
 
OutputNonlinearity
InitializeRBFNet, 120
NetPlot, FF and RBF networks, 85

 
ParameterRecord, 181
ParameterValues, NetPlot, FF and RBF networks, 86
ParametricPlot, NetPlot, Hopfield network, 236
Perceptron

generally, 53
object, 54

PerceptronFit, 55
PerceptronRecord, 55
PredictHorizon

dynamic network, 192
NetComparePlot, 194
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Prediction of currency exchange rate, 362
Preprocessing, 10
 
Radial basis function network, 119
RandomInitialization
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
Perceptron, 54
PerceptronFit, 55

RBFNet, 119
Recursive
InitializeVQ, 311
UnsupervisedNet, 255
UnsupervisedNetFit, 258
VQFit, 314

Regressor, 190
Regularization, 161
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
NeuralFit, 151

ReportFrequency, 176, 181
 
SaturatedLinear, 386
Self-organizing feature maps, 32
Separable, NeuralFit, 151
SetNeuralD, 88
ShowRange, NetComparePlot, 194
Sigmoid, 384
SOM, 253, 254
NetPlot, unsupervised network, 267
UnsupervisedNet, 254
UnsupervisedNetFit, 258

SOMOptions, InitializeVQ, 311
Steepest descent, 23
SteepestDescent, NeuralFit, 156
StepLength
NeuralFit, 151
PerceptronFit, 55
UnsupervisedNet, 255
UnsupervisedNetFit, 258
VQFit, 314

Stopped search, 161
Surface, NetPlot, Hopfield network, 236
System identification, 26
 
Table
NetPlot, unsupervised network, 267
NetPlot, VQ, 318

Time series, 8
ToFindMinimum, NeuralFit, 151
Training

controlling presentation of results, 176
dynamic networks, 149
FF networks, 22, 149
Hopfield networks, 29
RBF networks, 22, 149
Separable , 169
unsupervised networks, 259
vector quantization network, 314

Training neural networks with FindMinimum, 159
Training record, 180
Trajectories, NetPlot, Hopfield network, 236
 
Unsupervised networks, 253
UnsupervisedNetDistance, 264
UnsupervisedNetFit, 256
UnsupervisedNetRecord, 257
UnUsedNeurons

Unsupervised network, 265
VQ, 317

UseSOM, UnsupervisedNet, 255
UseUnsupervisedNet, InitializeVQ, 311
 
Vector quantization, 309
Voronoi
NetPlot, unsupervised network, 267
NetPlot, VQ , 318

VQ, 309
VQDistance, 316
VQFit, 312
VQPerformance, 316
VQRecord, 313
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