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Preface

Parallel  Computing  Toolkit  (PCT)  brings parallel  computation to anyone  with access  to  more  than one com-
puter  on  a  network.  It  implements  many  parallel  programming  primitives  and  includes  high-level  com-
mands  for  the  parallel  execution  of  operations  such  as animation,  plotting,  and matrix  manipulation.  This
toolkit  also  supports  many  popular  programming  approaches  such  as  parallel  Monte  Carlo  simulation,
visualization, searching, and optimization. The implementation of all high-level commands is in Mathematica
source form and can serve as templates for building additional parallel programs.

PCT builds on Mathematica’s advanced symbolic programming language. It is written entirely in the Mathe-
matica language  and uses Mathematica’s standard MathLink®  protocol to communicate between any number
of Mathematica  kernels.  The kernels can run under any supported operating system including Unix, Linux,
Windows, and Macintosh. Individual machines can be single- or multiprocessor PCs and servers connected
through TCP/IP. 

PCT  supports  all  common  parallel  programming  paradigms:  shared  or  distributed  memory;  automatic  or
explicit  scheduling;  and  concurrency,  including  synchronization,  locking,  and  latency  hiding.  It  also  sup-
ports failure recovery. In the event of a network, hardware, or software failure, the affected computation is
reassigned.

We gratefully  acknowledge  the  support  of  Orion  Multisystems,  whose  desktop  cluster  workstation  DT-12
was used to perform most of the evaluations shown in the PCT documentation and examples.

Roman E. Maeder, October 2004





Changes in Parallel Computing Toolkit 
Version 2

New Functionality

ParallelEvaluate[]  has  been  extended  to  become  a  flexible  tool  for  implementing  many  structural
operations (such as Map, Apply, Cases, Select, Count, MemberQ, FreeQ, Inner, Outer, and all associa-
tive functions) in parallel.

A new auxiliary command ParallelDispatch[]  for  sending different commands to different kernels is
the basis for the re-implementation of ParallelEvaluate[] and ParallelTable[].

Delayed definitions for shared variables are possible and cause the right sides to be evaluated on the remote
kernels.

Support for different process queue models has been added, including user-defined ones. Standard queues
provided are a FIFO queue (as in Version 1) and a new priority queue, as well as a faster unordered queue.

Processes can be queued with a user-defined priority that the scheduler takes into account when assigning
processes to processors.

There is more extensive debugging support and saving of trace output for later analysis.

If no remote kernels are available, all evaluations happen sequentially in the master kernel.

A new command RemoteNeeds[] for loading packages on remote kernels has been added.



Enhancements

ParallelEvaluate[],  ParallelMap[],  and  ParallelTable[]  do  a  single  dispatch  on  each  remote
kernel, taking relative processor speeds into account for optimal load balancing.

There  are  new  commands  ParallelSum[]  and  ParallelProduct[]  to  complement  ParallelTa
ble[].

A  new  configuration  variable  $RemoteUserName  for  use  in  kernel  launch  command  templates,  such  as
$RemoteCommand, has been added.

Send[kernel, cmd] returns kernel, so you can use it as an argument of Receive[].

Receive[]  can  take  a  list  of  kernels  as  the  argument  and  waits  for  one  result  from  each  kernel  while
allowing for callbacks, such as shared variables.

RemoteEvaluate[] allows callbacks and therefore shared variables.

A proper data type for remote kernels with improved diagnostic print formatting is included.

Aborting remote kernels is possible, provided the MathLink  device used for the kernel connection supports
aborts.  Resetting  runaway  kernels  is  possible  in  a  wider  set  of  circumstances,  in  many  cases  without  an
actual abort.

Newly  launched  kernels  inherit  all  previously  exported  environments,  loaded  packages,  and  declared
shared variables.

There is a new command ClearShared[] to unshare previously shared variables. The variables $Shared
Variables  and  $SharedDownValues  give  the  lists  of  currently  shared  variables  and  downvalues,
respectively.

It is possible to extract a part of a shared variable and transmit only the requested part of the variable to the
remote kernel, rather than its whole value.

Process scheduling has much less latency.

Needs["Parallel`"] sets up PCT by loading the required parts and autoloading the optional extensions
(except for Parallel`Commands`).

viii Parallel Computing Toolkit



ParallelEvaluate[Dot[...]], ParallelEvaluate[Inner[...]], and ParallelDot/Parallel
Inner also parallelize tensors of rank 1 (vectors).

Obsolete Features

$TraceLevel  is  supported  only  for  backwards  compatibility.  There  is  a  nicer  debugging  facility  in  the
Parallel`Debug` package.

CloseSlave[] has been renamed Close[]; the old name is still supported.

Incompatibilities

The symbols $AvailableMachines, $RemoteCommand, and RemoteMachine are no longer in the global
context,  but in Parallel`Configuration`.  If  PCT finds that global symbols with the same names exist
and  have  values,  those  values  are  picked  up,  so  old  initialization  code  should  still  work.  (A  shadowing
warning is emitted in this case.)

ResetSlaves[]  no longer clears remote definitions. It is intended to clean up after an abort of the master
kernel. There is a new function ClearSlaves[] that clears all remote definitions and shared variables.

Queue[]  and  DoneQ[]  no  longer  call  QueueRun[].  Explicit  scheduling  code  should  be  checked  for  any
necessary changes.  In most cases,  QueueRun[]  is  called implicitly when Wait[]  or  WaitOne[]  is called,
so no changes will be necessary.

Use of $TraceLevel requires loading the debugging support package before loading PCT itself.

The  default  connection  type  for  starting  kernels  on  remote  machines  is  LinkConnect  rather  than Link
Launch. LinkLaunch is still used for local kernels.

The  default  link  protocol  for  remote  kernels  is  TCPIP.  Launching  remote  kernels  prior  to  Mathematica  5
requires a LinkProtocol->"TCP" setting.

Changes in Version 2 ix



Limitations

There is no ParallelDo[], because Do[] makes sense only in the presence of side effects, which prevent a
naive parallelization.
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1 Introduction

Parallel Computation with Mathematica

The  MathLink  communication  protocol  can  be  used  to  control  several  Mathematica  kernel  processes  from
within  Mathematica.  This  feature  allows  the  implementation  of  a  distributed-memory  environment  for
parallel  programming.  Parallel  language constructs,  such as a parallel  version of  Map,  can easily be imple-
mented on top of these primitive operations.

Parallel Computing Toolkit  (PCT) is written entirely in Mathematica  and is therefore machine-independent.  It
has been tested on Unix, Linux, Windows, and Macintosh platforms. This product can be used in heteroge-
neous networks. All client and application code is distributed through MathLink.  No common file system is
necessary.

To perform computations in parallel, you need to be able to perform the following tasks:

• start processes and wait for processes to finish

• schedule processes on available processors

• exchange data between processes and synchronize access to common resources



In the Mathematica  environment, the term processor  refers to a running Mathematica  kernel, whereas a job or
process is an expression to be evaluated.

Parallel Computing Toolkit Features

The main features of PCT are

• distributed memory, master/slave parallelism

• written in Mathematica 

• machine independent

• MathLink communication with remote kernels

• exchange of symbolic expressions and programs with remote kernels, not only numbers and arrays

• heterogeneous network, multiprocessor machines, LAN, and WAN

• virtual process scheduling or explicit process distribution to available processors

• virtual shared memory, synchronization, locking

• latency hiding

• parallel functional programming and automatic parallelization support

• failure recovery, automatic reassignment of stranded processes on failed remote computers

Requirements

To use PCT, you need access to a number of remote computers capable of running Mathematica  or use of a
multiprocessor  local  machine,  a  suitable  network connection between your  local computer  and the remote
machines, and the required number of Mathematica licenses. Note that even if a network is set up, there may
be security restrictions that limit your ability to start Mathematica on remote computers.
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To start  Mathematica  on a  remote  computer,  the  remote  computer  must  run an rsh/ssh  daemon or  other
remote login or execution service. The chapter Starting Remote Kernels contains detailed discussions of the
various available options.

An alternative  approach  that  works  on  any computer  equipped  with a  TCP/IP network,  even without  an
rsh  daemon,  is  to  manually  start  the  desired  kernels  on  each  remote  machine  and  then  connect  to  the
waiting kernels from the local machine.

Overview of Remote Execution

The method used to start remote kernels depends on both the operating system of your local computer and
the types of remote computers you use. You can start kernels on remote computers that have an operating
system different from the one you are using locally.

This section covers typical PCT commands you would use to start remote kernels on Windows, Mac OS X,
or  Unix  systems.  The  chapter  Starting  Remote  Kernels  will  describe  how  to  start  kernels  manually  and
provide details on the commands presented in this section.

PCT provides a high-level command LaunchSlave  for connecting to and starting kernels on remote com-
puters. The command has the following general form.

LaunchSlave@"remotehost", "oscommands", "options"D
The  variable  remotehost  is  the  name  of  the  remote  computer  on  which  you  will  start  a  kernel.  On  a  local
network,  this can be a simple hostname. On a wide-area network, this would typically be a domain name,
such  as  host.example.com.  If  you  have  a  multiprocessor  and  can  therefore  start  kernels  on  your  local
machine, use "localhost" rather than the computer name.

The  oscommands  argument  is  passed  to  the  command  interpreter  on  your  computer;  its  form  depends  on
your  operating  system.  This  argument  can be  a  series of  commands that  start  a  kernel.  Certain values  are
interpolated into the command string to make this feature more general. Typical oscommands are:

• ssh: The name of your local ssh client command. This command is used to establish a secure 
connection to a remote computer. ssh is provided with most versions of Unix, and it is available as 
third-party software for Windows.
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• rsh: The name of your local rsh client command. It works in a similar way to ssh using a widely 
supported standard protocol, but provides only minimal security features.

•  winrsh: A Windows rsh client distributed with Mathematica for systems lacking rsh.

• math: The name of the command on the remote computer to start the Mathematica kernel. You may 
have to give a full pathname such as /usr/local/bin/math.

• $mathkernel: The full pathname of the command used to start a local kernel.

A  remote  host  may  require  your  login  name  before  you  can  establish  a  connection.  In  this  case  username,
your login name on the remote computer, will be part of the second argument of LaunchSlave.

Before running any commands, load PCT into your local Mathematica session with the Needs command.

In[1]:= Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

Working on a Unix or Macintosh Computer

To connect to a remote computer running Unix or Mac OS X and start a Mathematica kernel there, use

LaunchSlave@"remotehost"D
This  command uses  the value  of  the  variable $RemoteCommand  as the  default oscommands  argument.  The
slots  `1`  through  `4`  are  replaced  by  values  such  as  remote  hostname,  linkname,  login  name,  and
linkprotocol.

In[2]:= $RemoteCommand

Out[2]= ssh −x −f −l `3` `1` math −mathlink −linkmode Connect `4` −linkname '`2`' −noinit

If this is not appropriate for a particular remote host, you can supply your own custom command.

LaunchSlave@"remotehost",
"rsh `1` êusrêlocalêbinêmath −mathlink −linkmode Connect `4` −linkname '`2`' &"D
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To connect to your own local machine and start a kernel there (recommended for testing and if you have a
multiprocessor machine), use the following command.

In[3]:= LaunchSlave@"localhost"D
Out[3]= slave1@localhostD
Working on Windows

Please  note  that  establishing  connections  to  Windows  requires  third-party  software  (some  of  which  is
available  for  free)  and  special  installation.  Please  refer  to  the  detailed  discussion  in  Chapter  2,  Starting
Remote Kernels. You, however, can easily establish connections from your local Windows PC.

To connect to a remote computer with an rsh daemon, use

LaunchSlave@"remotehost"D
This  command uses  the value  of  the  variable $RemoteCommand  as the  default oscommands  argument.  The
slots  `1`  through  `4`  are  replaced  by  values  such  as  remote  hostname,  linkname,  login  name,  and
linkprotocol.

In[2]:= $RemoteCommand

Out[2]= rsh `1` −n −l `3` "math −mathlink −

linkmode Connect `4` −linkname `2` −noinit >& êdevênull &"

If this is not appropriate for a particular remote host, you can supply your own custom command.

LaunchSlave@"remotehost", $winrsh <>

" −m −h `1` −l `3` −t 2 'math −mathlink `4` −linkmode Connect −linkname `2`'"D
To connect to your own local machine and start a kernel there, use the following command.

In[3]:= LaunchSlave@"localhost"D
Out[3]= slave2@localhostD
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Simple Parallel Computations

Once you have successfully started at least one remote kernel, you can begin to use PCT.

First, you can ask each remote kernel to identify itself. The result is a list of each remote kernel’s unique ID,
the  remote  host’s  name,  Mathematica’s  identifier  for  the  remote  operating system,  the  remote  kernel’s  pro-
cess ID, and the Mathematica version running on the remote computer.

In[10]:= TableForm@
RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $ProcessID, $Version<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "process", "Mathematica Version"<<D

Out[10]//TableForm=
ID host OS process Mathematica Version
4 prokyon UltraSPARC 11293 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
5 sirius UltraSPARC 20025 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
6 delia Linux 1304 5.0 for Linux HNovember 18, 2003L
You  can  try  to  run  the  same  Mathematica  command  on  all  remote  computers.  Normally,  all  the  results
returned should agree. Here a definite integration is performed on each of the three remote kernels.

In[11]:= RemoteEvaluateA‡
1

∞

x−2 Å xE
Out[11]= 81, 1, 1<
Here four definite integrals with different lower bounds are computed in parallel.

In[12]:= ParallelTableAIntegrateA Sin@xD
cccccccccccccccccccccc
Sqrt@xD , 8x, i π, ∞<E, 8i, 0, 4<E

Out[12]= 9$%%%%%%%πcccc
2
, $%%%%%%%πcccc

2
−è!!!!!!!!2 π FresnelS@è!!!!2 D, $%%%%%%%πcccc

2
−è!!!!!!!!2 π FresnelS@2D,

$%%%%%%%πcccc
2

−è!!!!!!!!2 π FresnelS@è!!!!6 D, $%%%%%%%πcccc
2

−è!!!!!!!!2 π FresnelS@2 è!!!!2 D=
The remaining chapters of the documentation will provide many more examples of typical parallel computa-
tions you can perform with the help of PCT.
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Cleaning Up

When  you  have  completed  your  parallel  computations,  you  should  stop  all  remote  kernels  before  exiting
your local Mathematica kernel and front end. 

In[13]:= CloseSlaves@D
Out[13]= 8zombie@localhostD, zombie@siriusD, zombie@deliaD<
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2 Starting Remote Kernels

Configurations  of  local  computing  infrastructure  vary  widely  from  site  to  site.  Unfortunately,  there  is  no
simple way to accommodate all possible setups. This chapter describes the various configurations in detail,
so  the  content  is  fairly  technical.  Your  local  system administrator  may  be  able  to  help  you  set  up  remote
connections.

The way to start a remote (slave) kernel depends on the operating systems of the local and remote machines,
the properties of the network, and the security measures in effect. Note that you can also start slave kernels
on  the  local  machine  where  the  master  kernel  is  running.  This  is  particularly  useful  for  testing  and  on
multiprocessor machines.

MathLink Communication Modes

PCT uses MathLink  to communicate with remote kernels. Once a connection has been established, it is used
for any further communication with the remote kernel.  The MathLink  connection provides a machine-inde-
pendent channel for Mathematica expressions between the controlling (master) kernel and the remote (slave)
kernels.

In general, establishing a connection to a remote kernel requires two steps. First, the remote kernel must be
started,  then  it  must  be  instructed  to  establish  a  MathLink  connection  to  the  master  kernel.  Both  of  these
tasks can be performed with the command LaunchSlave[].  Depending on its arguments,  it uses various
MathLink commands to achieve the result.

Active Connection (LinkLaunch)

An  active  connection  is  initiated  from  the  master  kernel  by  using  the  MathLink  function  Linkg
Launch["oscommands", options]. The argument oscommands is an operating system command that makes a
connection to a remote machine and starts a Mathematica kernel on that remote machine.



LinkLaunch[]  is  used by default  for  launching slave  kernels  on  the local  machine in the form Launchg
Slave["localhost",options].  The  PCT  command  LaunchSlave["remotehost","oscommands",  Connecg
tionType→LinkLaunch] also uses the active connection method.

Callback Connection (LinkCreate)

For kernels on remote machines, it is generally better to establish separate MathLink connections than to use
the  command  channel  opened  by  LinkLaunch.  The  master  kernel  opens  a  MathLink  link  in  Listen  mode
using LinkCreate[], then the remote kernel is instructed to connect to the listening link.

The following command creates a link to which remote kernels can connect.

LaunchSlave["remotehost", "oscommands", options]

The oscommands  is  usually  a  template  that  may contain the  sequences  `1`,  `2`,  `3`,  and `4`,  which are
replaced by values computed by the code in LaunchSlave.  `1`  is  replaced by the hostname, `2`  by the
name of the link created, `3` by the user name, and `4` by the MathLink linkprotocol specification for
nondefault protocols. Examples for the use of these placeholders is given in the examples that follow.

Passive Connection

Active  or  callback  connections  may  not  be  available  because  of  operating  system  deficiencies  or  security
measures.  If  this  is  the  case,  another  method  for  establishing  a  connection  is  available.  You can  manually
start  a  kernel  on a  remote  machine  and instruct  it  to  open a  TCPIP port  on which to listen  for  connection
requests.  This  is  usually  achieved by providing the command-line  arguments -mathlink -linkcreate
to  the  command  to  start  the  kernel,  usually  math.  (Under  Windows,  add  -linkprotocol TCPIP.)  The
started kernel will tell you the ports on which it is listening.

In the master kernel you can make a connection to a listening kernel with the following MathLink command 

LinkConnect["port1@hostname,port2@hostname"]

The  PCT  command  ConnectSlave["port1@hostname,port2@hostname"]  will  connect  to  a  listening  remote
kernel.
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Link Objects

The  result  of  a  successful  LinkLaunch  or  LinkConnect  connection  is  a  MathLink  link  object  having  the
following form.

LinkObject[name,number,...]

The  name  is  taken  from  the  argument  of  LinkLaunch  or  LinkConnect  and  allows  you  to  identify  the
object.  PCT  keeps  track  of  the  available  remote  kernels  by  maintaining  a  list  of  such  link  objects  in  the
variable $Slaves. To obtain the raw link object from a remote kernel object, use LinkObject[kernel].

Remote Execution Options

To use  active  or  callback  connections,  you  need  a  way  to  execute  a  command  to  start  Mathematica  on  the
remote computer.

The available  methods for  remote  command execution depend on the  operating system of  the  master and
slave machines. The network applications rsh and ssh are standard under Unix. Under Windows you can
use any rsh program that may be provided with the system or available from a number of sources, or use
winrsh, which is supplied with Mathematica.

Your local machine, from which you want to initiate a  connection, needs an ssh  or rsh  client program;  the
remote machine needs a corresponding daemon.

Remote Execution under Unix and Mac OS X

To make a connection from your local Unix or Mac OS X machine you can use the rsh or ssh programs.

The shell ssh is a replacement for rsh that offers secure cryptographic authentication and encryption of the
communication between the local  and remote  machines.  It  is,  therefore,  usable in situations where  the rsh
security  is  insufficient  such  as  on  the  internet.  If  your  site  is  requiring  ssh,  please  contact  your  system
administrator about your local setup. PCT has been tested with Version 2 of ssh.
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Using ssh

To test whether ssh is configured correctly, the following command can be given in a shell window.

ssh remotehost math

Here, remotehost  is the name of the remote machine and math is the command to start a Mathematica  kernel
on the remote machine. If the remote machine is outside of the local area network, then remotehost must be a
fully qualified domain name. If the math command is not on the search path, the full pathname can be given
instead, for example /usr/local/bin/math.

It is a good idea to try to establish a connection in a shell window to see whether everything is set up cor-
rectly before trying to use the given remote host in PCT. If everything is fine, the remote kernel should print
the familiar In[1]:= prompt. You can then use Quit[] to terminate the remote kernel and the connection to
the remote machine.

Once ssh is working, you can use the following command to start a kernel on a remote Unix machine.

LaunchSlave["remotehost","ssh -f `1` math -mathlink -linkmode Connect 
-linkname '`2`'"]

The placeholder `1` is replaced by the remote hostname remotehost, `2` is replaced by the link specification
of  the  link  created  by  LinkCreate[].  The  resulting  command is  then  executed  by  the  operating  system.
LaunchSlave[]  supports  a  number  of  additional  placeholders  to  accommodate  more  complicated situa-
tions, see the section Configuring Parallel Computing Toolkit.

If you leave out the second argument, the following default is used.

$RemoteCommand

ssh −x −f −l `3` `1` math −mathlink −linkmode Connect `4` −linkname '`2`' −noinit

For  an  active  connection  that  uses  standard  input  and  output  as  MathLink  transport,  use  the  following
command.

LaunchSlave["remotehost","ssh `1` math -mathlink", 
ConnectionType->LinkLaunch]

The  placeholder `1`  is  replaced by  the  remote  host  name remotehost.  The resulting command is  then exe-
cuted by the operating system.
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You may have  to  prefix  the  remote  kernel  command math  with  the  appropriate  pathname on  the  remote
machine, such as /usr/local/bin/math.

rsh

The following shell command starts an interactive Mathematica kernel on a remote machine.

rsh remotehost math

Here, remotehost  is the name of the remote machine and math is the command to start a Mathematica kernel.
If the remote machine is outside of the local area network, then remotehost  must be a fully qualified domain
name. If the math command is not on the search path, the full pathname can be given instead, for example
/usr/local/bin/math.

It is a good idea to try to establish a connection in a shell window to see whether everything is set up cor-
rectly before trying to use the given remote host in PCT. If everything is fine, the remote kernel should print
the familiar In[1]:= prompt. You can then use Quit[] to terminate the remote kernel and the connection to
the remote machine.

Once rsh is working, you can use the following PCT command to start a kernel on a remote Unix machine,
using a callback connection.

LaunchSlave["remotehost","rsh `1` math -mathlink -linkmode Connect 
-linkname '`2`' &"]

The placeholder `1` is replaced by the remote hostname remotehost, `2` is replaced by the link specification
of the link created by LinkCreate[]. The resulting command is then executed by the operating system.

For  an  active  connection  that  uses  standard  input  and  output  as  MathLink  transport,  use  the  following
command.

LaunchSlave["remotehost","rsh `1` math -mathlink", 
ConnectionType->LinkLaunch]

The  placeholder `1`  is  replaced by  the  remote  host  name remotehost.  The resulting command is  then exe-
cuted by the operating system.

You  may  have  to  prefix  the  remote  kernel  command  math  with  the  appropriate  pathname,  such  as
/usr/local/bin/math.
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To start  a  kernel on a remote Windows machine,  the remote machine must have an rsh  daemon running.
You can start a remote kernel on a Windows machine from a Unix host by using commands similar to those
explained in the section Remote Execution under Windows. For example, issue the following command on a
local Unix machine to start a remote kernel on a remote Windows host. 

LaunchSlave["remoteWindowshost",
"rsh `1` math -mathlink -linkmode Connect -linkname `2` &"]

Security considerations

You  can only  use  rsh  if  you  are  allowed to  log  into  the  remote  machine  without  a  password.  For  this  to
work, your local machine must be in the remote machine’s /etc/hosts.equiv or ~/.rhosts file. See the
Unix Manual for rlogin and rsh for more details and consult your system administrator.

Starting kernels on your local machine

For  testing,  and  if  you  have  a  multiprocessor  machine  available,  you  can  also  start  kernels  on  your  local
machine where you operate the master kernel and the front end.

LaunchSlave["localhost"]

This command uses the value of the variable $mathkernel  as the command to launch a kernel.  It should
be set up suitably for your Mathematica installation.

A typical value for Unix is shown here.

$mathkernelêusrêlocalêWolframêMathematicaê5.0êExecutablesêmath −noinit −mathlink

Here is a typical value for Mac OS X.

$mathkernelêMathematica\ 5.0.appêContentsêMacOSêMathKernel −noinit −mathlink

Remote machines running Mac OS X

No math script is installed on Mac OS X. To launch a remote kernel on a Mac OS X machine, you can either
give the full pathname of the MathKernel executable or write your own math script; see the support pages
support.wolfram.com/applicationpacks/parallel for more information.
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The  kernel  is  typically  at  $InstallationDirectory/Contents/MacOS/MathKernel.  Because  the
pathname contains  space  characters,  it  needs  to  be  enclosed  in  double  quotes  and the  space  escaped  by  a
backslash. Here is an example of a command to launch a kernel on a Mac OS X machine.

LaunchSlave["remotehost","ssh -f `1` \"/Mathematica\\ 5.1.app/Contents/Macg
OS/MathKernel\" -mathlink -linkmode Connect `4` -linkname '`2`'"]

Remote Execution under Windows

Under Windows you can use any available rsh program or winrsh.exe, which is supplied with Mathemat-
ica, to start remote kernels. The remote kernel can then establish a TCPIP connection back to the local kernel.
This  is  most  easily  done  by  creating  a  MathLink  object  locally  to  which  the  remote  kernel  can  establish  a
callback connection. 

On the remote end, the Mathematica kernel command-line arguments -linkmode Connect -linkprotog
col TCPIP -linkname  port1@host,port2@host  instruct the kernel to connect to an open port on your local
machine,  host.  PCT will  provide the port1@host,port2@host  argument  for you.  Use `2`  to  interpolate it  into
the command string.

You need a rsh daemon for all remote machines. Note that Mathematica does not provide an rsh daemon.

If  your  version  of  Windows includes  rsh,  you  can  use  these  arguments  to  LaunchSlave  to  make  connec-
tions to remote hosts.

LaunchSlave["remotehost"]

This command uses the following template for starting the remote kernel.

$RemoteCommand

rsh `1` −n −l `3` "math −mathlink −

linkmode Connect `4` −linkname `2` −noinit >& êdevênull &"

The first placeholder `1` will be replaced by the hostname remotehost  as usual; the second placeholder `2`
will  be replaced by a link object  created on the local machine to which the remote kernel can connect.  The
placeholder `3` is replaced by the username. If the remote host does not require a login username, omit the
-l `3` option. The placeholder `4` is replaced by the correct -linkprotocol setting.
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You  may  have  to  prefix  the  remote  kernel  command  math  with  the  appropriate  pathname,  such  as
/usr/local/bin/math for a remote Unix system. Be sure to give the correct user name for connecting to
the remote machine.

The winrsh client

Mathematica  for  Windows  ships  with  an  rsh  client  winrsh.exe  that  can  be  used  if  no  rsh  command  is
available. To use this client to make connections to remote hosts, use these arguments to LaunchSlave.

LaunchSlave["remotehost",
$winrsh<>" -m -h `1` -l `3` -t 2 'math -mathlink `4` -linkmode Connect 
-linkname `2`'"]

You can make this command the default by setting $RemoteCommand like this.

$RemoteCommand = $winrsh <>

" −m −h `1` −l `3` −t 2 'math −mathlink `4` −linkmode Connect −linkname `2`'"

The $winrsh  command opens a window. The connection will  not be established and will  appear to hang
until the window has closed. The option -t 2  instructs winrsh to close the window after two seconds.

The command winrsh.exe  is found in the SystemFiles\FrontEnd\Binaries\Windows  folder inside
your  Mathematica  installation.  PCT  provides  a  variable  $winrsh  that  contains  the  complete  pathname
appropriate for your installation.

$winrsh

"C:\Program Files\Wolfram Research\
Mathematica\5.0\SystemFiles\FrontEnd\Binaries\Windows\winrsh"

In case of problems,  you can open an MS-DOS window and try winrsh  there. You can do something like
the following.

"C:\Program Files\Wolfram 
Research\Mathematica\5.0\SystemFiles\FrontEnd\Binaries\Windows\winrsh.exe
"-h remotehost -l username 'dir'

Then winrsh should open a window and display a directory listing, dir, of the remote host.
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Available third-party software

A  list  of  third-party  rsh  daemons  and  clients  can  be  found  at  support.wolfram.com/applicationpacks/
parallel.  (The  author,  MathConsult  Dr.  R.  Mäder,  and  Wolfram  Research,  Inc.  do  not  endorse  any  of  the
products listed at that URL. We provide this information in the hope that it may be useful.)

If you have an ssh client installed on Windows, you may be able to connect to a remote Unix or Mac OS X
slave using ssh. Neither PCT nor Mathematica  supply an ssh client for Windows, but there are several avail-
able commercially. You can then use the following command to launch remote kernels.

LaunchSlave["remotehost","ssh -x -f -l `3` `1` \"math -mathlink -linkmode 
Connect `4` -linkname '`2`' </dev/null >&/dev/null &\""]

The exact arguments needed may vary with network and machine configurations. 

Starting a kernel on a local Windows machine

For testing and in multiprocessor machines,  you can conveniently start  a  kernel on the local machine.  Use
this command.

LaunchSlave["localhost"]

This command uses the value of the variable $mathkernel  as the command to launch a kernel.  It should
be set up suitably for your Mathematica installation.

$mathkernel

"C:\Program Files\Wolfram Research\Mathematica\5.0\MathKernel"

Remote machines running Mac OS X

No math script is installed on Mac OS X. To launch a remote kernel on a Mac OS X machine, you can either
give the full pathname of the MathKernel executable or write your own math script; see the support pages
support.wolfram.com/applicationpacks/parallel for more information.

The  kernel  is  typically  at  $InstallationDirectory/Contents/MacOS/MathKernel.  Because  the
pathname contains  space  characters,  it  needs  to  be  enclosed  in  double  quotes  and the  space  escaped  by  a
backslash. Here is an example of a command to launch a kernel on a Mac OS X machine.
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LaunchSlave["remotehost","ssh `1` \"\"/Mathematica\\ 5.1.app/Contents/Macg
OS/MathKernel\" -mathlink -linkmode Connect `4` -linkname '`2`' 
</dev/null >&/dev/null &\""]

Passive Connections

If  your  local  computer  does  not  provide  an  rsh  client  or  the  remote  computer  does  not  provide  an  rsh
daemon, you have to start the required remote kernels manually on each remote computer.

These command-line options should be given to the kernel command on the remote machines.

-mathlink -linkcreate

Under Windows, you should add -linkprotocol TCPIP.

The kernel will start up and tell you the address or linkname  where it is listening. Addresses have the form
port@host  or  port1@host,port2@host,  where  port  is  a  TCP  port  number  (a  decimal  integer)  and  host  is  the
computer’s name.

With  this  information,  you  can  establish  a  connection  from  your  local  kernel  to  the  remote  one  with  the
following command.

ConnectSlave["port1@host,port2@host"]

Under Windows, you should include the option setting LinkProtocol->"TCPIP".

Alternatively, ConnectSlave can take an already established MathLink link object as its argument.

Note that you may be able to use a  Telnet application to log in to a  remote computer,  so you can give the
commands  described  in  the  following  section  from your  local  machine.  Otherwise,  you  will  have  to  enter
the command at the computer’s console.
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Unix and Mac OS X Remote Computers

To start a kernel on Unix, give the following command in a shell or Telnet window.

math -mathlink -linkcreate

Mathematica  will output the listening ports on standard output. If  math  is not on your search path, give an
absolute pathname, such as /usr/local/bin/math.

Once  you  receive  the  listening  port  information,  you  can  connect  to  the  waiting  remote  kernel  from your
local  computer  with  the  command  ConnectSlave["linkname",LinkProtocol->"TCPIP"]  (you  can
omit the option setting on a Unix local computer).

Windows Remote Computer

To start a kernel on Windows, give the following command in an MS-DOS window on the remote computer.

math -mathlink -linkcreate -linkprotocol TCPIP

Mathematica will open a small panel that displays the ports on which it is listening. You must close this panel
before the connection can be used.

Once  you have  the  listening  port  information,  connect  to  the  waiting  remote  kernel  from your  local  com-
puter with the command ConnectSlave["linkname",LinkProtocol->"TCPIP"].

Using a Running Kernel

You  can  also  prepare  a  running  kernel  as  a  remote  kernel  for  parallel  computations.  Start  the  kernel  by
double-clicking  the  MathKernel  (not  Mathematica)  icon  or  starting  math  in  a  shell  window.  You  can  then
create the required link from within the Mathematica kernel as follows.

   1.   Launch (double-click) MathKernel. Do not launch Mathematica! A window with the prompt 
In[1]:= appears.

   2.  At the In[1]:= prompt, give the following command shown here with the expected form of the 
result.
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In[1]:= lnk = LinkCreate@LinkProtocol −> "TCPIP", LinkMode −> ListenD
LinkObject@port1@host,port2@host, 2, 2D

   3.  Take note of the port numbers that appears in place of port.

   4.  At the next input prompt, In[2]:=, give the following command. No output will be produced.

In[2]:= $ParentLink = lnk

With this information, you can now connect to the waiting remote kernel from your local computer with the
command ConnectSlave["port1@host,port2@host"].

Configuring Parallel Computing Toolkit

This section lists the commands available in PCT and shows you how you can prepare a configuration file to
automate the task of starting the remote kernels that are usually available to you.

Launching Remote Kernels

To start a remote kernel and add it to the list of available slave processors, use the command LaunchSlave.

LaunchSlave["remotehost", "oscommands"]

use the operating system (shell) command oscommands to start 
a kernel on a remote machine named remotehost and have it 
connect to a link created on the local machine

LaunchSlave["remotehost", "oscommands", ConnectionType->LinkLaunch]
use the operating system (shell) command oscommands to start 
a kernel on a remote machine named remotehost using Linkg
Launch (no separate MathLink connections)

LaunchSlave["localhost", "oscommands"]
use the operating system (shell) command oscommands to start 
a kernel on the local machine (using LinkLaunch)
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LaunchSlave["localhost"]

use the operating system (shell) command stored in 
$mathkernel to start a kernel on the local machine

LaunchSlave["remotehost"]
use the operating system (shell) command stored in 
$RemoteCommand to start a kernel

$ProcessorID a unique integer assigned to each remote kernel (numbers are 
assigned starting with 1)

Starting remote kernels.

The  argument  oscommands  can  be  a  template  containing  the  character  sequences  `1`  for  connection  type
LinkLaunch and `1` through `4` for connection type LinkConnect.

placeholder meaning

`1` hostname the remote hostname, the first argument of
LinkLaunch

`2` link name the name of the link object created

`3` remote user the username on the remote machine, the
value of $RemoteUserName, which 
defaults to $UserName

`4` protocol a suitable -linkprotocol proto setting for
the MathLink argument list

Placeholders in operating system command templates.

If there is no LinkProtocol->"proto" setting in LaunchSlave, the placeholder `4` expands to the empty
string for local connections (to use the native default protocol) and to -linkprotocol TCPIP  for remote
connections. If an explicit LinkProtocol->"proto" setting exists, `4` expands to -linkprotocol proto.

To  connect  to  a  Mathematica  4.2  remote  kernel,  use  LinkProtocol->"TCP"  in  the  LaunchSlave  com-
mand. 
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The following options can be given in LaunchSlave.

option name default value

InitCode $InitCode a sequence of commands (wrapped inside
Hold) to send to each remote kernel upon
startup

ConnectionType Automatic the MathLink connection type, which can be
either LinkLaunch or LinkCreate; by 
default, LinkLaunch is used for local 
kernels, and LinkCreate is used for 
remote kernels

LinkProtocol Automatic this option is passed on to LinkLaunch or
LinkCreate by default, "TCPIP" is used
for remote kernels, and no setting is used 
for local kernels

LinkHost "" this option is passed on to LinkCreate; it
can be used to specify the interface on 
which the link is listening

ProcessorSpeed 1 an estimate of the relative speed of the 
remote kernel

Options of LaunchSlave.

The default value of the variable $InitCode is Hold[$DisplayFunction=Identity;].

These options can also be given to ConnectSlave[].

If all or most of your remote hosts can be reached with the same command, you can set $RemoteCommand
to a suitable command template that is used by default in LaunchSlave.

For Unix and Mac OS X, the default value is

$RemoteCommand="ssh -x -f -l `3` `1` math -mathlink -linkmode Connect 
`4` -linkname '`2`' -noinit";
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One requirement is that the command return quickly, even though Mathematica keeps running. If it does not
return, you can put the command into the background with a setting like the following.

$RemoteCommand="ssh -n -x -f -l `3` `1` math -mathlink -linkmode Connect 
`4` -linkname '`2`' -noinit &";

Under Windows, $RemoteCommand is set by default to

$RemoteCommand="rsh `1` -n -l `3` \"math -mathlink -linkmode Connect `4` 
-linkname `2` -noinit >& /dev/null &\"";

To use winrsh.exe, if no rsh is available, use

$RemoteCommand=$winrsh<>" -m -h `1` -l `3` -t 2 'math -mathlink `4` 
-linkmode Connect -linkname `2`'";

If  $RemoteCommand  is  set  up  correctly,  you  can simply  use  the  following  commands to  start  a  kernel  on
remote hosts named, for example, host1 and host2.

LaunchSlave["host1"]
LaunchSlave["host2"]

To connect to your local machine (recommended for testing and if you have a multiprocessor machine), you
should be able to use

LaunchSlave["localhost"]

You may want to verify that $mathkernel  contains the appropriate command for invoking a local kernel
by evaluating $mathkernel.

$mathkernel

Using Passive Connections

For passive connections, you should manually start the remote kernels with the -linkcreate argument as
described earlier, note the ports on which the remote kernels are listening, and use ConnectSlave for each
remote kernel.
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ConnectSlave["linkname"] connect to a listening link on the given computer

ConnectSlave[link] connect to an existing MathLink object

Connecting to listening kernels.

Port  numbers  will  usually  be  different  each  time  you start  a  remote  kernel;  therefore,  this  method  cannot
easily be automated.

Preparing a Host Description List

To automate the task of starting remote kernels, you can prepare a list of available machines.

RemoteMachine["remotehost", "oscommands"]
a host description for a computer named remotehost using the 
command oscommands for connection and using the default 
connection type defined for LaunchSlave

RemoteMachine["remotehost"]
host description for a computer named remotehost using the 
default command $RemoteCommand for connection

"remotehost" simple hostname; shortcut for RemoteMachine["remotehost"]

$RemoteCommand the default oscommands to use

RemoteMachine["localhost"]
host description for the local machine

$mathkernel the default command to start a local kernel

Host description entries.

The  command  LaunchSlaves[list]  takes  a  list  of  such  host  descriptions  as  an  argument  and  tries  to
establish a connection to each of the hosts listed.

Finally,  you  can  assign  a  list  of  host  descriptions  to  the  global  variable  $AvailableMachines  and  use
LaunchSlaves[] without an argument, which will consult this variable.
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Defining a Default Configuration

Note that you can put assignments for $AvailableMachines  and $RemoteCommand  into your personal
Mathematica kernel startup file init.m.

You do not need to load PCT to define a default configuration. There is a smaller package Parallel`Cong
figuration` that you can load instead.

Needs@"Parallel`Configuration "̀D
Alternatively, you can put assignments for $AvailableMachines  and $RemoteCommand into a notebook
and evaluate them to set up the connections. You can use one of the samples here as a template. Copy the
appropriate  cell  group  into  a  new  notebook  and  save  it  under  a  name  such  as  UnixInit.nb  or  Windows-
Init.nb. Then you can simply open this notebook and evaluate its cells to set up your remote kernels.

Sample configuration for Windows

Some  of  the  input  cells  in  this  template  have  been  made  inactive  (not  evaluatable),  because  they  contain
commands for  optional  features.  Enable  these cells  on a case-by-case basis according to your needs.  These
commands will evaluate properly only if you have access to a Windows machine on which to start a kernel
and you substitute valid values for variable arguments.

Load PCT.

Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Enable optional features as desired.

Needs@"Parallel`Commands`"D
Set your default remote command if the default is not suitable.

$RemoteCommand = "rsh `1` −n −l `3` \"math −mathlink −

linkmode Connect `4` −linkname `2` −noinit >& êdevênull &\"";

Set the default remote username if it is different from your local username.

$RemoteUserName = "name";
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If you have ssh available, you can set $RemoteCommand to use ssh.

$RemoteCommand =

"ssh `1` −x −f −l `3` \"math −mathlink −

linkmode Connect `4` −linkname `2` <êdevênull >& êdevênull &\"";

Use winrsh.exe if neither rsh nor ssh are available.

$RemoteCommand = $winrsh <>

" −m −h `1` −l `3` −t 2 'math −mathlink `4`−linkmode Connect −linkname `2`'";

Set the default initialization for your remote kernels.

$InitCode = Hold@$DisplayFunction = Identity;D;
List any normally available machines, filling in the hostname variable in each entry.

$AvailableMachines = 8
RemoteMachine@"hostname1"D,
RemoteMachine@"hostname2"D<;

Now you can try to start a remote kernel on all defined remote machines.

LaunchSlaves@$AvailableMachinesD
You can also put LaunchSlave  or ConnectSlave commands for special cases here and evaluate them as
needed.

LaunchSlave@"specialhost", "special template", optionsD
Start a kernel on the local machine.

LaunchSlave@"localhost"D
Connect to a manually started remote kernel.

ConnectSlave@"port1ûhost,port2ûhost", LinkProtocol → "TCPIP"D
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Now verify that all remote kernels are operating correctly by collecting information about them.

TableForm@
RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $ProcessID, $Version<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "process", "Mathematica Version"<<D

After finishing your computations, you should close all connections.

CloseSlaves@D
Sample configuration for Unix and Mac OS X

Some  of  the  input  cells  in  this  template  have  been  made  inactive  (not  evaluatable),  because  they  contain
commands for  optional  features.  Enable  these cells  on a case-by-case basis according to your needs.  These
commands will evaluate properly only if you have access to a Unix machine on which to start a kernel and
you substitute valid values for variable arguments.

Load PCT.

Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Enable optional features as desired.

Needs@"Parallel`Commands`"D
Set your default $RemoteCommand.

$RemoteCommand = "ssh −x −f −l `3` `1` math −

mathlink −linkmode Connect `4` −linkname '`2`' −noinit";

Set the default remote username if it is different from your local username.

$RemoteUserName = "name";

Set the default initialization for your remote kernels.

$InitCode = Hold@$DisplayFunction = Identity;D;
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List any normally available machines.

$AvailableMachines = 8
RemoteMachine@"hostname1"D,
RemoteMachine@"hostname2"D<;

Now you can try to start a remote kernel on all defined remote machines.

LaunchSlaves@$AvailableMachinesD
You can also put LaunchSlave  or ConnectSlave commands for special cases here and evaluate them as
needed.

LaunchSlave@"specialhost", "special template", optionsD
Start a kernel on the local machine.

LaunchSlave@"localhost"D
Connect to a manually started remote kernel.

ConnectSlave@"port1ûhost,port2ûhost"D
Now verify that all remote kernels are operating correctly by collecting information about them.

TableForm@
RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $ProcessID, $Version<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "process", "Mathematica Version"<<D

After finishing your computations, close all connections.

CloseSlaves@D
Kernel Initialization

To  prevent  the  execution  of  the  initialization  commands  you  may  have  put  into  your  init.m  file,  add  the
argument -noinit  to any kernel invocation command. This is recommended unless you have put specific
commands for initializing remote kernels into init.m.

You can put your remote kernel initialization commands into the PCT variable $InitCode.
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Housekeeping

The list of available remote kernels is given in $Slaves. This is a read-only variable that contains the active
kernel objects you have previously opened with LaunchSlaves, LaunchSlave, or ConnectSlave.

Length[$Slaves]  gives  you  the  number  of  currently  connected  remote  machines  or  the  degree  of
parallelism.

The Remote Kernel Object

The properties of the remote kernel objects can be obtained with these functions.

ProcessorID[kernel] a unique integer assigned to each kernel

ProcessorName[kernel] the name of the machine on which the kernel is running

ProcessorSpeed[kernel] an estimate of the relative of the remote processor

LinkObject[kernel] the raw MathLink LinkObject that connects to the remote 
kernel

Host description entries.

To  get  a  nicely  formatted  listing  of  properties  of  the  remote  kernel  connections,  use  this  command.  The
command is followed by output from a sample session.

TableForm@
Through@8Identity, ProcessorID, ProcessorName, ProcessorSpeed, LinkObject<@#DD & ê@
$Slaves,

TableHeadings −> 8None, 8"slave", "id", "name", "speed", "link"<<D
slave id name speed link

slave1@localhostD 1 localhost 1 LinkObject@êhomeêprokyonêmathêDistê501êExecutablesêmath −noinit −mathlink, 2, 2D
slave2@siriusD 2 sirius 1 LinkObject@44320@denebola,44321@denebola, 3, 3D
slave3@siriusD 3 sirius 1 LinkObject@44323@denebola,44324@denebola, 4, 4D
slave4@prokyonD 4 prokyon 1 LinkObject@44326@denebola,44327@denebola, 5, 5D
slave5@deliaD 5 delia 1 LinkObject@44332@denebola,44333@denebola, 6, 6D
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Remote Properties

The variable $ProcessorID is set on each remote kernel to its own processor ID (pid).

To get a  nicely formatted listing of this and other standard properties of the remote kernels,  use this com-
mand. The command is followed by output from a sample session.

TableForm@RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $Version, $CommandLine, $ParentLink<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "Mathematica Version",

"CommandLine", "Parent Link"<<, TableDepth → 2D
ID host OS Mathematica Version
1 denebola UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
2 sirius UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
3 sirius UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
4 prokyon UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
5 delia Linux 5.1 for Linux HOctober 25, 2004L

Troubleshooting

If you get an error message and the result $Failed when using LaunchSlave, the connection could not be
established. There are a number of reasons this can happen:

• The remote computer cannot be reached over the network, or you do not have sufficient privileges to 
execute remote commands on the computer.

• The remote computer does not run an ssh or rsh daemon. Such daemons are standard under Unix 
and Mac OS X and available as third-party products under Windows.

• Mathematica may not be installed correctly on the remote computer, the math command may not be 
on your search path, or you do not have a sufficient number of Mathematica licenses.

• Your remote execution command on Windows has exceeded the low, arbitrary limit on command 
length that Microsoft imposes on command execution. Please refer to the section Remote Execution 
under Windows for more details. In most cases, PCT will tell you that running the command has 
failed with exit code -1.
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You  can  still  continue  to  use  any  remote  kernels  that  you  could  launch  correctly;  failed  connections  will
never be used by PCT.

The  variable  $Slaves  gives  the  current  list  of  remote  connections  that  started  up  normally.  If  there  is  at
least one, you can continue to work with PCT. Evaluating the expression $Slaves  will return the value of
this variable.

To  diagnose  network  problems,  you  can  use  the  netstat  operating  system  command  in  a  Unix  shell  or
MS-DOS  window.  You  should  try  command-line  arguments  to  find  which  will  work  on  your  operating
system; most likely it will be one of the following.

netstat-a-p tcp
netstat-a-f inet
netstat-a-t

The  output  of  netstat  will  list  existing  TCP  connections  to  remote  computers.  Each  remote  kernel  will
occupy one or two such TCP connections.

Tracing MathLink Commands

With debugging and tracing enabled, LinkLaunch[]  will show you which MathLink  commands it runs to
establish a connection with a remote kernel. To use these features, you have to load the debugging package
before loading PCT.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D

Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

Now you can enable MathLink tracing.

In[3]:= SetOptions@$DebugObject, Trace → 8MathLink<D
Out[3]= 8Trace → 8MathLink<<
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Sample trace of a callback connection

This sample output shows how a default connection to a remote host is established. The output shown is

• the LinkCreate[] command used to establish a listening link on the local machine

• the resulting link created

• the command run to start the remote kernel with all placeholders filled in

• the exit code of this command (should be 0)

• the remote kernel object of the new kernel

In[4]:= LaunchSlave@"sirius"D
MathLink: Creating listening link with

LinkCreate@Sequence@LinkProtocol → TCPIP, LinkHost → , LinkHost → DD
MathLink: Link created as LinkObject@34946@prokyon,34947@prokyon, 2, 2D

MathLink: Running command "ssh −x −f −l maeder sirius math −mathlink −linkmode
Connect −linkprotocol TCPIP −linkname '34946@prokyon,34947@prokyon' −noinit"

MathLink: Command returned 0

Out[4]= slave1@siriusD
Sample trace of a LinkLaunch connection

This sample output shows how a default connection to the local host is established. The output shown is

• the LinkLaunch[] command used to start the kernel, containing the operating system command to 
start the kernel itself and the LinkLaunch[] options used

• the resulting link created

• the remote kernel object of the new kernel
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In[5]:= LaunchSlave@"localhost"D
MathLink: Launching kernel on localhost with LinkLaunch@

Sequence@êhomeêprokyonêmathêDistê501êExecutablesêmath −noinit −mathlink,
LinkProtocol → Automatic, LinkHost → , LinkProtocol → Automatic, LinkHost → DD

MathLink: Link launched as LinkObject@êhomeêprokyonêmathêDistê501êExecutablesêmath −noinit −mathlink, 3, 3D
Out[5]= slave2@localhostD
To turn off tracing when you are done, use the following.

In[6]:= SetOptions@$DebugObject, Trace → 8<D
Out[6]= 8Trace → 8<<
Resetting and Terminating Remote Kernels

Resetting Kernels

After aborting the master kernel  during a parallel  computation and if  remote kernels do not respond, you
can try to reset them and bring them back into a usable state.

Abort[kernel] aborts a kernel (interrupt any running evaluations)

ResetSlaves[] discards any processes in the queue and aborts all running
evaluations

Aborting and resetting kernels.

ResetSlaves can be used after a parallel computation has been aborted with the menu command Kernel @
Abort Evaluation, or ·Î.Ï.

For  some  remote  kernel  connections,  notably  for  kernels  started  on  remote  machines  using  LinkLaunch,
there may be no way to interrupt them. If  a remote evaluation takes too long or is  in an infinite loop,  you
must terminate the remote kernel process using the appropriate operating system command.
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Clearing Kernels

Between  different  parallel  computations,  you  may  want  to  make  sure  that  all  remote  kernels  delete  any
variable definitions that may have been set. Rather than terminating and restarting all kernels, you can use
ClearSlaves.

ClearSlaves[] clears all variables in the remote kernel’s Global` context 
and forgets any shared variables and exported environments

Clearing definitions.

Definitions for symbols in contexts other than Global` are not cleared.

Any  definitions  of  global  symbols  exported  with  ExportEnvironment  will  become  unavailable.  Any
shared global variables will become unshared.

Terminating Kernels

When you are done with your parallel computations, close any open remote kernel connections.  This frees
the resources occupied on the remote machines and closes the open network connections.

Close@kernelD closes the given connection link and removes it from 
$Slaves

CloseSlaves[] terminates all open connections

Terminating kernels.

Note  that  exiting  the  local  master  kernel  may or  may  not  close  the  open  connections  cleanly.  Always  use
CloseSlaves[] before exiting the master kernel.
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3 Parallel Evaluation

Sending Commands to Remote Kernels

Recall  that  connections  to  remote  kernels,  as  opened  by  LaunchSlave,  are  represented  as  kernel  objects.
See the chapter Starting Remote Kernels for details. The commands in this section take such kernel objects as
arguments and send or receive Mathematica expressions to remote kernels using these links. In the following,
the variable link is a kernel returned by LinkLaunch or LinkConnect.

Low-Level Send and Receive

Send[link, cmd] sends cmd for evaluation to the remote kernel connected to 
link; returns link

Send[{links…}, cmd] sends cmd for evaluation to all remote kernels listed

ReceiveIfReady[link] returns a result waiting on the given link; returns $NotReady 
if no result is waiting

ReceiveIfReady[link, h] wraps the result in h[…] before returning it

Receive[link] waits for a result on the given link and returns it

Receive[{links…}] waits for a result on each of the links and returns them in a list

Receive[links, h] wraps the results in h[…] before returning them
RemoteEvaluate[cmd, link] sends cmd for evaluation to the remote kernel connected to 

link, then waits for the result and returns it
RemoteEvaluate[cmd,
{links…}]

sends cmd for evaluation to the remote kernels given, then 
waits for the results and returns them

RemoteEvaluate[cmd] sends cmd for evaluation to all remote kernels and returns the 
list of results; equivalent to RemoteEvaluate[cmd, 
$Slaves]

Sending and receiving commands to and from remote kernels.



Send has the attribute HoldRest so that the given command is not evaluated before it is sent to the remote
kernel. RemoteEvaluate has the attribute HoldFirst.

RemoteEvaluate[cmd, link] is equivalent to the combination Send[link, cmd]; Receive[link].

With ReceiveIfReady[link], you can poll several open links for results.

You cannot use RemoteEvaluate while a concurrent computation involving Queue or Wait is in progress.
See the chapter Concurrency: Managing Parallel Processes for details.

Values of Variables

Values  of  variables  defined  on  the  local  master  kernel  are  usually  not  available  to  remote  kernels.  If  a
command you send for evaluation refers to a variable,  it usually will  not work as expected.  The following
piece  of  code  will  return  False  because  the  symbol  a  will  most  likely  not  have  any  value  at  all  on  the
remote kernel.

a = 2;
RemoteEvaluate@a === 2, linkD

A convenient way to insert variable values into unevaluated commands is to use With, as demonstrated in
the following command.

With@8a = 2<, RemoteEvaluate@a === 2, linkD D
The symbol a is replaced by 2, then the expression 2 === 2 is sent to the remote kernel where it evaluates to
True.

If you need variable values and definitions carried over to the remote kernels, use ExportEnvironment or
the package Parallel`VirtualShared`, which is part of PCT.

Iterators,  such  as  Table  and  Do,  work  in  the  same  way with  respect  to  the  iterator  variable.  Therefore,  a
statement  like  the  following  will  not  do  the  expected  thing.  The  variable  i  will  not  have  a  value  on  the
remote kernel.

Table@RemoteEvaluate@i2, linkD, 8i, 1, 10<D
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You can use the following command to accomplish the intended iteration on the remote kernel. This substi-
tutes the value of i into the argument of RemoteEvaluate.

Table@With@8i = i<, RemoteEvaluate@i2, linkDD, 8i, 1, 10<D
Pattern variables, constants, and pure function variables will work as expected on the remote kernel. Each of
the following three examples will produce the expected result.

Function@i, RemoteEvaluate@i2DD@5D
f@i_D := RemoteEvaluate@i2D
With@8i = 5<, RemoteEvaluate@i2DD

Parallel Evaluation of Expressions

Dispatching Evaluations to Remote Kernels

ParallelDispatch[h[e1,e2,…,en],{k1,k2,…,km}]

evaluates ei on kernel ki and returns h@ r1, r2, … rnD,
where ri is the result of evaluating ei;
the default list of kernels is $Slaves

ParallelEvaluate@h@e1,e2,…,enD,f,combD
evaluates f@h@e1,e2,…,enDD in parallel
by distributing chunks f @h@ei,ei+1,…,ei+kDD to all
kernels and combining the results with comb@D

ParallelEvaluate@h@e1,e2,…,enD,fD
the  default  combiner  comb  is  h,  if  h  has  attribute  Flat,  and
Join otherwise

ParallelEvaluate@h@e1,e2,…,enDD
the default function f is Identity

Basic parallel dispatch of evaluations.
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In ParallelDispatch[h[e1,e2,…, en],{k1,k2,…,km}], the number m of kernels must be at least as large
as the number n of expressions. ParallelDispatch  has the attribute HoldFirst  so that h[e1,e2,…, en]
is not evaluated on the master kernel before the parallelization.

ParallelDispatch[{e1,e2,…, en},{k1,k2,…,kn}]  is  equivalent  to  Receive[Inner[g
Send,{k1,k2,…,kn},{e1,e2,…, en}]].

ParallelEvaluate@h@e1, e2, …, enD, f, combD  breaks  h@e1, e2, …, enD  into  as  many  pieces
h@ei, ei+1, …, ei+kD as there are remote kernels, evaluates f @h@ei, ei+1, …, ei+kDD in parallel (using Parallelg
Dispatch[]), then combines the results ri  using comb[r1,r2,…,rm]. ParallelEvaluate has the attribute
HoldFirst so that h[e1,e2,…, en] is not evaluated on the master kernel before the parallelization.

The  size  of  the  pieces  of  the  input  expression  is  chosen  to  be  proportional  to  the  remote  processor  speed
estimates for optimal load balancing.

ParallelEvaluate

ParallelEvaluate  is  a  general  and  powerful  command  with  default  values  for  its  arguments  that  are
suitable for evaluating elements of containers such as lists and associative functions.

Evaluating List-like Containers

If  the  result  of  applying  the  function  f  to  a  list  is  again  a  list,  ParallelEvaluate@8e1, e2, …, en<, fD
simply applies f to pieces of the input list and joins the partial results together.

In[1]:= ParallelEvaluate@81, 2, 3, 4, 5, 6, 7, 8, 9<, PrimeD
Out[1]= 82, 3, 5, 7, 11, 13, 17, 19, 23<
The result is the same as that of Prime[{1,2,3,4,5,6,7,8,9}], but the computation is done in parallel.

The default function is Identity,  therefore, ParallelEvaluate@8e1, e2, …, en<D  simply evaluates the
elements ei in parallel.

In[2]:= ParallelEvaluate@81 + 2, 2 + 3, 3 + 4, 4 + 5, 5 + 6<D
Out[2]= 83, 5, 7, 9, 11<
If the result of applying the function f to a list is not a list, a custom combiner has to be chosen.
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The function Function[li,Count[li,_?OddQ]  counts the number of odd elements in a list. To find the
total number of odd elements, add the partial results together.

In[3]:= ParallelEvaluate@81, 2, 3, 4, 5, 6, 7, 8, 9<, Function@li, Count@li, _?OddQDD, PlusD
Out[3]= 5

Evaluating Associative Operations

If the operation h in h@e1, e2, …, enD is associative (has attribute Flat), the identity

h@e1, e2, …, enD = h@h@e1, e2, …, eiD, h@ei+1, ei+2, …, enDD
holds;  with  the  default  combiner  being  h  itself,  the  operation  is  parallelized  in  a  natural  way.  Here  all
numbers are added in parallel.

In[4]:= ParallelEvaluate@1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9D
Out[4]= 45

In[5]:= ParallelEvaluate@GCD@4, 6, 8, 10DD
Out[5]= 2

Parallel Mapping and Iterators

The commands in this section are fundamental to parallel programming in Mathematica.

ParallelEvaluate[h[e1,e2,...]] evaluates the elements ei in parallel and returns h[ r1, r2, …],
where ri is the result of evaluating ei

ParallelMap[ f,  h@ e1, e2, ...DE evaluates h[ f @e1D, f @e2D , …] in parallel.

ParallelTable[expr,{i,i0,i1,di},{j,j0,j1,dj},…]
builds Table@expr,8i,i0,i1,di<,8j,j0,j1,dj<,…D in parallel;
parallelization occurs along the
first HoutermostL iterator 8i, i0, i1,di <

ParallelSum[…] , ParallelProduct@…D
computes sums and products in parallel

Parallel evaluation, mapping, and tables.
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ParallelEvaluate  has  attribute  HoldFirst,  so  that  its  argument  is  not  evaluated  on  the  local  kernel.
After receiving the results, ri, the expression h@r1, r2, …D is further evaluated normally on the local kernel.
The symbol List is often used as the head h.

ParallelMap@f, h@e1, e2, …DD  is  a  parallel  version  of  f ê@ h@e1, e2, …D  evaluating  the  individual
f@eiDin parallel rather than sequentially.

ParallelEvaluate and related commands use all available remote kernels on the list $Slaves.

Side Effects

Unless you use shared variables, the parallel evaluations performed are completely independent and cannot
influence each other. Furthermore, any side effects, such as assignments to variables, that happen as part of
evaluations will be lost. The only effect of a parallel evaluation is that its result is returned at the end.

Examples

First, load the package and then start several remote kernels.

In[1]:= Needs@"Parallel`"D
Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

The sine function is applied to the given arguments. Each computation takes place on a remote kernel. 

In[2]:= ParallelMap@Sin, 80, π, 1.0<D
Out[2]= 80, 0, 0.841471<
This particular computation is almost certainly too trivial to benefit from parallel evaluation. The overhead
required to send the expressions Sin[0], Sin[π], and so on to the remote kernels and to collect the results
will be larger than the gain obtained from parallelization.
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Factoring integers of the form 111…1 takes more time, so this computation can benefit from parallelization.

In[3]:= ParallelMapAFactorInteger, 10^Range@20, 30D − 1
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc

9
E

Out[3]= 88811, 1<, 841, 1<, 8101, 1<, 8271, 1<, 83541, 1<, 89091, 1<, 827961, 1<<,883, 1<, 837, 1<, 843, 1<, 8239, 1<, 81933, 1<, 84649, 1<, 810838689, 1<<,8811, 2<, 823, 1<, 84093, 1<, 88779, 1<, 821649, 1<, 8513239, 1<<,8811111111111111111111111, 1<<, 883, 1<, 87, 1<, 811, 1<, 813, 1<,837, 1<, 873, 1<, 8101, 1<, 8137, 1<, 89901, 1<, 899990001, 1<<,8841, 1<, 8271, 1<, 821401, 1<, 825601, 1<, 8182521213001, 1<<,8811, 1<, 853, 1<, 879, 1<, 8859, 1<, 8265371653, 1<, 81058313049, 1<<,883, 3<, 837, 1<, 8757, 1<, 8333667, 1<, 8440334654777631, 1<<, 8811, 1<,829, 1<, 8101, 1<, 8239, 1<, 8281, 1<, 84649, 1<, 8909091, 1<, 8121499449, 1<<,883191, 1<, 816763, 1<, 843037, 1<, 862003, 1<, 877843839397, 1<<,883, 1<, 87, 1<, 811, 1<, 813, 1<, 831, 1<, 837, 1<, 841, 1<,8211, 1<, 8241, 1<, 8271, 1<, 82161, 1<, 89091, 1<, 82906161, 1<<<
Alternatively, you can use ParallelTable. A list of the number of factors in 11 …1´̈ ¨̈ ¨≠ Æ¨¨̈

i
 is generated here.

In[4]:= ParallelTableA9i, Plus @@ H#@@2DD &L ê@ FactorIntegerA 10i − 1
cccccccccccccccccc

9
E=, 8i, 20, 30<E êê

TableForm

Out[4]//TableForm=
20 7
21 7
22 7
23 1
24 10
25 5
26 6
27 7
28 8
29 5
30 13
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Automatic Parallelization

ParallelEvaluate[cmd[list,arguments…]] recognizes if cmd is a Mathematica function that operates on a
list or other long expression in a way that can be easily parallelized and performs the parallelization automat-
ically. You do not need to figure out suitable f and comb for ParallelEvaluate@list, f, combD. The list of
commands that can be parallelized is kept in the variable $ParallelCommands.

In[5]:= $ParallelCommands

Out[5]= 8Cases, Select, Count, MemberQ, FreeQ,
Map, Apply, Outer, Inner, Dot, Table, Sum, Product<

In[6]:= ParallelEvaluate@Count@81, 2, 3, 4, 5, 6, 7<, _?PrimeQDD
Out[6]= 4

In[7]:= ParallelEvaluate@Map@f, 8a, b, c, d, e, f<DD
Out[7]= 8f@aD, f@bD, f@cD, f@dD, f@eD, f@fD<
In[8]:= ParallelEvaluateA8a, b, c, d<.ik

jjjjjjjjjjjj
w1 w2
x1 x2
y1 y2
z1 z2

y
{
zzzzzzzzzzzE

Out[8]= 8a w1 + b x1 + c y1 + d z1, a w2 + b x2 + c y2 + d z2<
Not all uses of these commands can be parallelized. A message is generated and the evaluation is performed
sequentially on the master kernel if necessary.

In[9]:= ParallelEvaluate@Apply@f, g@a, b, c, dDDD
ParallelEvaluate::nopar1 :  

f @@ g@a, b, c, dD cannot be parallelized; evaluating it sequentially.

Out[9]= f@a, b, c, dD
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4 Concurrency: Managing Parallel 
Processes

Processes and Processors

A process is simply a Mathematica expression being evaluated. A processor is a remote kernel that performs
such evaluations.

The command RemoteEvaluate discussed in the chapter Parallel Evaluation will send an evaluation to an
explicitly  given processor,  requiring  you to keep track of  available  processors  and processes  yourself.  The
scheduling functions discussed in this chapter perform these functions for you. You can create any number
of processes, many more than the number of available processors. If more processes are created than there
are processors, the remaining processes will be queued and serviced when a processor becomes available.

Starting and Waiting for Processes

The two basic commands are Queue[expr] to line up an expression for evaluation on any available proces-
sor, and Wait[pid] to wait until a given process has finished.

Each process in the queue is identified by its unique pid.



Queue[cmd] submits cmd for evaluation on a remote kernel and returns
the queued job’s pid

Queue[{vars…}, cmd] builds a closure for the local values of the given variables
before sending cmd to a remote kernel

QueueRun[] checks all remote kernels for available results and submits
waiting jobs to available remote kernels

DoneQ[pid] returns True if the given process has finished

Wait[pid] waits for the given process to finish and returns its result

Wait@8pid1, pid2, …<D waits for all given processes and returns the list of results

Wait[expr] waits for all pids contained in expr to finish and replaces 
them by the results of the respective process

WaitOne@8pid1, pid2, …<D waits for one of the given processes to finish; it returns {res,
id, ids}, where id is the pid of the finished process, res is its 
result, and ids is the list of remaining pids

Queuing processes.

WaitOne  is nondeterministic. It returns an arbitrary process that has finished. If no process has finished, it
calls QueueRun until a result is available. The third element of the resulting list is suitable as an argument of
another call to WaitOne.

The functions Queue  and Wait  implement concurrency.  You can start  arbitrarily many processes, and they
will all be evaluated eventually on any available remote processors. When you need a particular result, you
can wait for any particular pid, or you can wait for all results using repeated calls to WaitOne.

QueueRun[] returns True if at least one job was submitted to a remote kernel or one result received from a
kernel,  and  False  otherwise.  Normally,  you  should  not  have  to  run  QueueRun  yourself.  It  is  called  at
appropriate places inside Wait and other functions. You need it only if you implement your own main loop
for a concurrent program.
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Load[] gives the sum of the lengths of the input queues of all 
remote kernels 

Load[kernel] gives the length of the input queue of a remote kernel

$QueueLength gives the length of the input queue of commands submitted
with Queue but not yet assigned to an available remote 
kernel 

ResetQueues[] waits for all running processes and abandons any queued
processes 

System load and input queue size.

Basic Usage

To try the examples here, load PCT and then start a few local or remote kernels as described in the Introduc-
tion chapter.

In[1]:= Needs@"Parallel`"D
Queue the evaluation 1+1 for processing on a remote kernel. Note that Queue has the attribute HoldAll to
prevent evaluation of the expression before queueing. The value returned by Queue is the pid of the queued
process.

In[2]:= j1 = Queue@1 + 1D
Out[2]= pid1

After queuing a process, you can perform other calculations and eventually collect the result. If the result is
not yet available, Wait will wait for it.

In[3]:= Wait@j1D
Out[3]= 2

You can queue several processes. Here the expression 12, 22,…, 52 is queued for evaluation.
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In[4]:= pids = Function@i, Queue@i^2DD ê@ 81, 2, 3, 4, 5<
Out[4]= 8pid2, pid3, pid4, pid5, pid6<
Next, wait for any one process to finish.

In[5]:= 8res, pid, pids< = WaitOne@pidsD
Out[5]= 81, pid2, 8pid3, pid4, pid5, pid6<<
Note  the  reassignment  of  pids  to  the  list  of  remaining  pids.  Repeating  the  previous  evaluation  until  the
pids list becomes empty allows you to drain the queue.

In[6]:= 8res, pid, pids< = WaitOne@pidsD
Out[6]= 84, pid3, 8pid4, pid5, pid6<<
You can also wait for all of the remaining processes to finish.

In[7]:= Wait@pidsD
Out[7]= 89, 16, 25<
A Note on the Use of Variables

If  an expression e  in Queue@eD  involves  variables with assigned values,  care must  be taken to ensure that
the remote kernels have the same variable values defined. Unless you use ExportEnvironment  or shared
variables,  locally  defined  variables  will  not  be  available  to  remote  kernels.  See  the  section  Values  of  Vari-
ables in the chapter Parallel Evaluation for more information.

Here are a few common cases where there may be problems.

This assigns the value 2 to the variable a in the local master kernel.

In[8]:= a = 2;

You want to evaluate the expression Head[a] on a remote kernel. The result is not Integer, as it is on the
local kernel, because on the remote kernel the symbol a does not have a value.
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In[9]:= Head@aD
Out[9]= Integer

In[10]:= Wait@Queue@Head@aDDD
Out[10]= Symbol

You  can  use  a  local  constant,  and  even  name  it  a,  to  textually  insert  the  value  of  a  into  the  argument  of
Queue.

In[11]:= With@8a = a<, Wait@Queue@Head@aDDDD
Out[11]= Integer

To make  this  frequent  case  simpler,  you  can  use  an  optional  first  argument  in  Queue  to  declare  the  vari-
ables. The variables will then be inserted into the expression in the second argument.

In[12]:= Wait@Queue@8a<, Head@aDDD
Out[12]= Integer

The  syntax  Queue[{vars…},expr]  is  by  design  similar  to  Function[{vars…},expr].  Both  form  closures
where the variables are bound to their values.

Iterator  variables  behave  in  the  same  way.  In  the  following  two  outputs,  the  parallel  evaluation  does  not
give the correct result.

In[13]:= Table@i2, 8i, 1, 10<D
Out[13]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
In[14]:= Wait@Table@Queue@i2D, 8i, 1, 10<DD
Out[14]= 8i2, i2, i2, i2, i2, i2, i2, i2, i2, i2<
Insert the iterator variable as a constant or declare a closure to ensure that you are getting correct results, as
is done with the following command.

In[15]:= Wait@Table@Queue@8i<, i2D, 8i, 1, 10<DD
Out[15]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
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Note that ParallelTable[] treats the iterator variable correctly.

In[16]:= ParallelTable@i2, 8i, 1, 10<D
Out[16]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
Working with Process IDs

Wait@8pid1, pid2, …<D is merely a simple form of a general mechanism to parallelize computations. Wait
can take any expression containing pids in its arguments and will wait for all associated processes to finish.
The pids will then be replaced by the results of their processes.

You can view Wait as the inverse of Queue; that is, Wait@Queue@exprDD gives expr, evaluated on a remote
kernel,  just  as  expr  itself  is  evaluated  locally.  Further,  Wait@…Queue@e1D … Queue@enD …D  is  equivalent  to
… e1 … en …,  where  each  ei  is  evaluated  in  parallel.  Here  the  ellipses  represent  an  arbitrary  surrounding
computation.

The  pids  generated  by  an  instance  of  Queue  should  be  left  intact  and  should  neither  be  destroyed  nor
duplicated  before  Wait  performs  its  task.  The  reason  is  that  each  of  them  represents  an  ongoing  parallel
computation whose result should be collected exactly once.

Examples of expressions that leave pids intact follow.

• pids in a list are safe, because the list operation does not do anything to its arguments; it merely keeps 
them together. Nested lists are also safe for the same reason.

Wait@8Queue@e1D, …, Queue@enD<D
• pids are symbolic objects that are not affected by Plus. They may be reordered, which is irrelevant. 

Most arithmetic operations are safe.

Wait@Queue@e1D + … + Queue@enDD
• Mapping a function involving Queue onto a list is safe because the result will contain the list of the 

pids.

Wait@Map@Queue@… # …D &, 8e1, …, en<DD
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• Table returns lists of pids and is, therefore, safe.

Wait@Table@Queue@8i<, exprD, 8i, 1, 10<DD
Examples of expressions that are not safe include the following.

• The Head operation will destroy the symbolic pid, as will other structural operations such as Length, 
ByteCount, and so on.

Wait@Head@Queue@eDDD
• Multiplying a pid by 0 will destroy it.

Wait@0∗Queue@eDD
• Do does not return anything, so all pids are lost. A similar case is Scan.

Wait@Do@Queue@8i<, exprD, 8i, 1, 10<DD
To  recover  from  a  computation  where  pids  were  destroyed  or  duplicated,  use  the  command  Resetg
Queues[] or ResetSlaves[].

ProcessID[pid] a unique integer identifying the process 

Process[pid] the expression representing the process

Scheduling[pid] the priority assigned to the process 

ProcessState[pid] the state of the process: queued, running, finished

Properties of pids.

Here several processes are queued.

In[1]:= ids = Queue@2 + #, Scheduling → #D & ê@ Range@6D
Out[1]= 8pid1, pid2, pid3, pid4, pid5, pid6<
Because the scheduler has not yet been running, all the processes are still queued for evaluation.
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In[2]:= TableForm@
Function@pid,

Through@8Identity, ProcessID, Process, Scheduling, ProcessState<@pidDDD ê@ ids,
TableHeadings → 8None, 8"pid", "ID", "expr", "prio", "state"<<D

Out[2]//TableForm=
pid ID expr prio state
pid1 1 2 + 1 1 queued

pid2 2 2 + 2 2 queued

pid3 3 2 + 3 3 queued

pid4 4 2 + 4 4 queued

pid5 5 2 + 5 5 queued

pid6 6 2 + 6 6 queued

To demonstrate how it works, the scheduler is invoked by hand.

In[3]:= QueueRun@D; QueueRun@D
Out[3]= False

Now some processes are running on the available processors; some may already have finished.

In[4]:= TableForm@
Function@pid,

Through@8Identity, ProcessID, Process, Scheduling, ProcessState<@pidDDD ê@ ids,
TableHeadings → 8None, 8"pid", "ID", "expr", "prio", "state"<<D

Out[4]//TableForm=
pid ID expr prio state
pid1 1 2 + 1 1 finished@3D
pid2 2 2 + 2 2 finished@4D
pid3 3 2 + 3 3 running@slave2@n1DD
pid4 4 2 + 4 4 running@slave3@n2DD
pid5 5 2 + 5 5 queued

pid6 6 2 + 6 6 queued

Wait[] invokes the scheduler until all processes are finished and returns their results. Note that the priori-
ties are not used with the default queue type, see the section The Scheduler, later in this chapter.

In[5]:= Wait@idsD
Out[5]= 83, 4, 5, 6, 7, 8<
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Latency Hiding

The latency  is the communication overhead, the time period between the completion of one request and the
start of servicing a new one.

MathLink  is a buffered stream. You can send additional requests before receiving all outstanding results.  If
you can keep the buffers full at all times, there will be no latency; each remote processor will always be busy.

To turn on latency hiding, set $LoadFactor  to a value larger than 1,  such as 2 through 5.  $LoadFactor
determines the maximum number of computations sent to a slave kernel before at least one of the results is
read. Here are two example commands that set latency hiding. 

$LoadFactor = 3; H∗ enable latency hiding ∗L
$LoadFactor = 1; H∗ disable latency hiding ∗L

To  benefit  from  latency  hiding,  you  should  plan  to  create  many  more  processes  than  there  are  remote
kernels.  You can create more processes using Queue or an appropriate parallel mapping or table construct.
If the number of processes is larger than $LoadFactor*Length[$Slaves], automatic load balancing is an
added benefit of this scheme. The faster processors will automatically service more processes.

Do not use latency hiding if you plan to create exactly one process for each remote kernel.

You  should  develop  your  program  with  the  default  $LoadFactor = 1  for  easier  debugging.  Once  your
program runs correctly, you can try to increase $LoadFactor and measure the effect on the elapsed time of
your computation. The smaller the remote computations are, the greater the benefit from latency hiding.

Latency  hiding  is  incompatible  with  virtual  shared  memory.  When  you  load  Parallel`Virtualg
Shared`, the value of $LoadFactor will be permanently set to 1.
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Examples

Before evaluating these examples, load the package and then start several remote kernels.

In[1]:= Needs@"Parallel`Parallel`"D
An Infinite Calculation

If you want to verify that the polynomials ⁄i=1
n+1 i xi-1  for n = 1, 2, … are all irreducible (an open conjecture),

factor the polynomials and then check that the length of the list of factors is 2,  one factor being the overall
numerical factor.

This computation will  continue forever.  To stop it,  abort the local evaluation by pressing ·Î.Ï  or  choosing
Kernel @ Abort Evaluation. After the abort, collect any waiting results, as follows.

Here is the definition of the polynomial in x with degree n.

In[2]:= poly@n_, x_D := ‚
i=1

n+1

i xi−1

You then make this definition known to all remote kernels.

In[3]:= ExportEnvironment@8poly<D;
For better performance, you turn on latency hiding by setting $LoadFactor to a value larger than 1.

In[4]:= $LoadFactor = 2;

Now you can start the computation, requiring that it print each result as it goes on. To stop the computation,
abort it by choosing Kernel @ Abort Evaluation or pressing ·Î.Ï. The explicit call of QueueRun[] is necessary
in such examples where you program your own scheduling details.

52 Parallel Computing Toolkit



In[5]:= d = 100; ids = 8<;
While@True,
While@$QueueLength m 0,

AppendTo@ids, Queue@8d<, 8d, Length@FactorList@poly@d, xDDD<DD;
d++;
If@! QueueRun@D, Break@DD;D;
If@Length@idsD > 0,8res, id, ids< = WaitOne@idsD;
Print@resDD;D 8101, 2<8103, 2<8100, 2<8102, 2<

Out[5]= $Aborted

Do not forget to collect the orphaned processes after an interrupt.

In[6]:= Wait@idsD
Out[6]= 88104, 2<, 8105, 2<, 8106, 2<, 8107, 2<, 8108, 2<<
Automatic Process Generation

A general way to parallelize many kinds of computation is to replace a function g occurring in a functional
operation by Composition@Queue, gD. This new operation will cause all instances of calls of the function
g  to  be  queued  for  parallel  evaluation.  The  result  of  this  composition  is  a  pid  that  will  appear  inside  the
structure constructed by the outer computation where g  occurred.  To put back the results of the computa-
tion of g,  wrap the whole expression in Wait.  Wait will replace any pid inside its expression by the result
returned by the corresponding process.
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Here are a few examples of such functional compositions.

Parallel mapping

A parallel version of Map is easy to develop. The sequential Map wraps a function f around all elements in a
list.

In[1]:= Map@f, 8a, b, c, d<D
Out[1]= 8f@2D, f@bD, f@cD, f@109D<
Simply  use  Composition@Queue, fD  instead  of  f  to  schedule  all  mappings  for  parallel  execution.  The
result is a list of pids.

In[2]:= Map@Composition@Queue, fD, 8a, b, c, d<D
Out[2]= 8pid16, pid17, pid18, pid19<
Finally,  simply wait  for  the processes  to  finish.  Every pid will  be replaced with the result  of  its  associated
process.

In[3]:= Wait@%D
Out[3]= 8f@2D, f@bD, f@cD, f@109D<
Parallel inner products

To see how this works for symbolic inner products, assume you want a generalized inner product where d
is the common last dimension of a and first dimension of b. Think of p as Plus and t as Times.Ha.bLi1 i2 …in−1 k2 k3 …km = p@t@ai1 i2 …in−1 1, b1 k2 k3 …kmD, …, t@ai1 i2 …in−1 d, bdk2 k3 …kmDD
Here is an example with d = 2.

In[4]:= Inner@t, Array@a, 82, 2<D, Array@b, 82, 2<D, pD
Out[4]= 88p@t@2@1, 1D, b@1, 1DD, t@2@1, 2D, b@2, 1DDD,

p@t@2@1, 1D, b@1, 2DD, t@2@1, 2D, b@2, 2DDD<,8p@t@2@2, 1D, b@1, 1DD, t@2@2, 2D, b@2, 1DDD,
p@t@2@2, 1D, b@1, 2DD, t@2@2, 2D, b@2, 2DDD<<
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You can use Composition[Queue,p]  in place of p  in the previous expression to queue all calculations of p
for concurrent execution. The result is a tensor of pids.

In[5]:= Inner@t, Array@a, 82, 2<D, Array@b, 82, 2<D, Composition@Queue, pDD
Out[5]= 88pid20, pid21<, 8pid22, pid23<<
Now, simply wait for all processes in this expression.

In[6]:= Wait@%D
Out[6]= 88p@t@2@1, 1D, b@1, 1DD, t@2@1, 2D, b@2, 1DDD,

p@t@2@1, 1D, b@1, 2DD, t@2@1, 2D, b@2, 2DDD<,8p@t@2@2, 1D, b@1, 1DD, t@2@2, 2D, b@2, 1DDD,
p@t@2@2, 1D, b@1, 2DD, t@2@2, 2D, b@2, 2DDD<<

This scheduling is not optimal in terms of communication. One better possibility is to parallelize only along
the dimensions of a and send the tensor b once to each processor before scheduling the jobs. The command
ParallelInner in the Parallel`Commands` package uses this strategy.

Parallel tables and sums

This code generates a 5 µ 5 matrix of random numbers, where each row is computed in parallel.

In[7]:= Wait@Table@Queue@Table@Random@D, 85<DD, 85<DD
Out[7]= 880.126768, 0.775646, 0.120027, 0.657164, 0.091348<,80.617092, 0.954231, 0.80132, 0.237532, 0.856428<,80.665655, 0.57283, 0.952782, 0.314881, 0.0194191<,80.073742, 0.46934, 0.633294, 0.648699, 0.241248<,80.265634, 0.675514, 0.239893, 0.628718, 0.0933279<<
Here is a sum whose elements are computed in parallel. Each element of the sum is a numerical integration.

In[8]:= Wait@Sum@Queue@8k<, NIntegrate@x^H−1 − 1ê kL, 8x, 1, ∞<DD, 8k, 1, 8<DD
Out[8]= 36.

Here is the corresponding table of symbolic results. The value of Ÿ
1

¶
1ÅÅÅÅÅÅÅÅÅÅÅÅÅx1+1êk  „ x is k.
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In[9]:= TableForm@
Wait@Table@Queue@8k<, 8k, Integrate@x^H−1 − 1êkL, 8x, 1, ∞<D<D, 8k, 1, 8<DD,
TableDepth −> 2D

Out[9]//TableForm=
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Comparison with ParallelEvaluate

Parallel  mapping,  tables,  and  inner  products  were  already  introduced  in  the  chapter  Parallel  Evaluation.
Those functions perform a single dispatch of part of the computation on each remote processors. The func-
tions in this chapter generate one process for each subproblem.

If  all  subproblems  take  the  same  amount  of  time,  the  functions  such  as  ParallelMap[],  ParallelTag
ble[]  are  faster.  However,  if  the  computation  times  of  the  subproblems  are  different,  and  not  easy  to
estimate in advance, it can be better to use Wait[… Queue[] … ] as described in this section. If the num-
ber  of  processes  generated  is  larger  than  the  number  of  remote  kernels,  this  method  performs  automatic
load balancing, because jobs are assigned to a kernel as soon as the previous job is done, and all kernels are
kept busy all the time.

Tracing

To observe  how processes  are  scheduled,  you can use  tracing.  To use  these  features,  you have to load the
debugging package before loading PCT and starting several kernels.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D
Now you can enable Queueing tracing.

56 Parallel Computing Toolkit



In[3]:= SetOptions@$DebugObject, Trace → 8Queueing<D
Out[3]= 8Trace → 8Queueing<<
Here several processes are queued showing how the queue grows in size.

In[4]:= ids = Queue@2 + #D & ê@ Range@4D
Queueing: pid1 queued H0L
Queueing: pid2 queued H1L
Queueing: pid3 queued H2L
Queueing: pid4 queued H3L

Out[4]= 8pid1, pid2, pid3, pid4<
Wait[] invokes the scheduler, which sends queued jobs to idle processors, collects results, and hands them
back to the application.

In[5]:= Wait@idsD
Queueing: pid1 on slave1@n1D
Queueing: pid2 on slave2@n2D
Queueing: pid1 done

Queueing: pid2 done

Queueing: pid3 on slave1@n1D
Queueing: pid4 on slave2@n2D
Queueing: pid1 dequeued

Queueing: pid2 dequeued

Queueing: pid3 done

Queueing: pid4 done

Queueing: pid3 dequeued

Queueing: pid4 dequeued

Out[5]= 83, 4, 5, 6<
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To turn off tracing when you are done, use the following.

In[6]:= SetOptions@$DebugObject, Trace → 8<D
Out[6]= 8Trace → 8<<
The Scheduler

Whenever Queue[] is called, a process is entered into a queue on the master kernel. The scheduler Queueg
Run[]  selects  the  first  process  in  the  queue as  soon as  a  remote  kernel  is  available.  By  choosing  different
queue implementations, you can specify which process should be considered the first one. PCT provides a
number of queues that you can use, or you can write your own. Queues are implemented in packages that
you can load as needed.

Parallel`Queue`FIFO FIFOQueue: first in, first out 

Parallel`Queue`Priority priorityQueue: user-definable priorities

Parallel`Queue`LIFO LIFOQueue: last in, first out (reverse) 

Parallel`Queue`Interface interface definitions for all queues 

Packages and queue types.

$Queue the queue of waiting processes

$QueueLength the number of processes in the queue

$QueueType gives the current queue type

SetQueueType@queueD changes the queue type to queue

Manipulating the queue.

This is the current queue type (the default).

In[1]:= oldType = $QueueType

Out[1]= Parallel`Queue`FIFO`FIFOQueue
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To use priority queues, for example, load the corresponding package.

In[2]:= Needs@"Parallel`Queue`Priority "̀D
In[3]:= ? priorityQueue

priorityQueue@D creates an empty queue.

Then change the queue type.

In[4]:= SetQueueType@priorityQueueD
Out[4]= priorityQueue

Now you can generate processes with optional priorities.

Queue[expr, Scheduling->p] queue expr with priority p

Specifying priorities.

In[5]:= ids = Queue@2 #, Scheduling → #D & ê@ Range@6D
Out[5]= 8pid1, pid2, pid3, pid4, pid5, pid6<
Each queue type implements the method Normal[] to give a list of the queue’s contents.

In[6]:= Normal@$QueueD
Out[6]= 8pid6, pid5, pid4, pid3, pid2, pid1<
The scheduler will schedule jobs with higher priority first. The order of the results is not affected.

In[7]:= Wait@idsD
Out[7]= 82, 4, 6, 8, 10, 12<
This resets the queue type to the default.

In[8]:= SetQueueType@oldTypeD
Out[8]= Parallel`Queue`FIFO`FIFOQueue
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5 Remote Definitions

Remote kernels do not have access to the values of variables defined in the local master kernel, nor do they
have access to locally defined functions.

PCT contains a command ExportEnvironment  that makes it easy to transport local variables and defini-
tions to all remote kernels. The main advantage of this method is that PCT does not need to be installed on
the remote kernels. All definitions are sent through the existing connection to the remote kernels.

Exporting Definitions

ExportEnvironment@8s1 ,  s2, … }] exports all definitions for symbols si to all remote kernels 

ExportEnvironment@s1 ,  s2, … ] the same as ExportEnvironment@8s1, s2, …<D
ExportEnvironment["Context`"] exports all definitions for all symbols in the given context

Exporting definitions.

ExportEnvironment has the attribute HoldAll to prevent the evaluation of the symbols.

ExportEnvironment  exports the following kinds of definitions:  OwnValues,  DownValues,  SubValues,
UpValues, DefaultValues, NValues.

ExportEnvironment  sets  the  attributes  of  the  remote  symbols  equal  to  the  locally  defined  attributes,
except for attributes such as Protected and Locked.

Any old definitions existing on the remote side are cleared before the new definitions are made.



Examples

Before evaluating these examples, load PCT and then start several remote kernels.

In[1]:= Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Define a variable with a value and a function with attributes.

In[2]:= var = 5;

In[3]:= SetAttributes@func, ListableD
func@r_D := r^2

The remote kernels do not know the symbol var as demonstrated with the next evaluation.

In[5]:= RemoteEvaluate@Names@"var"DD
Out[5]= 88<, 8<<
Here  is  a  subtle  point.  The  following  remote  evaluation  seems  to  work,  even though  the  symbols  are  not
defined on the remote side.

In[6]:= RemoteEvaluate@func@varDD
Out[6]= 825, 25<
The reason is that the remote kernels return the unevaluated expression func@varD,  because the function
and variable are not defined on the remote kernel. The master kernel evaluates the returned results further,
but it does so sequentially.

You  can  easily  produce  an  example  where  the  difference  between  remote  and  local  evaluation  becomes
apparent.

On the local kernel, the symbol var evaluates to 5, and the Head of 5 is Integer.

In[7]:= Head@varD
Out[7]= Integer
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On the remote kernels, var stays a symbol, and its head is Symbol.

In[8]:= RemoteEvaluate@Head@varDD
Out[8]= 8Symbol, Symbol<
You can export the local definitions to the remote kernels.

In[9]:= ExportEnvironment@var, funcD
Now the remote evaluation gives the same result as the local one.

In[10]:= RemoteEvaluate@Head@varDD
Out[10]= 8Integer, Integer<
Exporting Contexts

ExportEnvironment["Context`"]  exports all  definitions for  all  symbols  in the  given context.  Thus,  you
can use the following to make all your interactively entered definitions known to the remote kernels.

In[11]:= ExportEnvironment@"Global`"D
Out[11]= 8Global`<
Exporting the context of a package you have loaded may not have the same effect on the remote kernels as
loading  the  package  on  each  remote  kernel.  The  reason  is  that  loading  a  package  may  perform  certain
initializations and it may also define auxiliary functions in other contexts (such as a private context). Also, a
package may load additional auxiliary packages that establish their own contexts.

ExportEnvironment["Context`"] is useful for exporting contexts for definitions that you have explicitly
set up to be used on remote kernels.  There is a separate command RemoteNeeds[]  for remote loading of
packages.

ClearSlaves[] clears any definitions for symbols in the Global` context on remote kernels.
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Loading Packages on Remote Kernels

RemoteNeeds["Context`"] calls Needs["Context`"] in all remote kernels

Loading packages.

RemoteNeeds["Context`"]  is  essentially equivalent  to RemoteEvaluate[Needs["Context`"]],  but  it  is
remembered and any newly launched remote kernels will be initialized as well.

Exporting the context of a package that you have loaded may not have the same effect on the remote kernels
as loading the package on each remote kernel with RemoteNeeds[].  The reason is that loading a package
may perform  certain  initializations  and  it  may  also  define  auxiliary  functions  in  other  contexts  (such  as  a
private context). Also, a package may load additional auxiliary packages that establish their own contexts.

The next two commands load the standard package Geometry`Rotations`  on the master kernel and all
remote kernels. 

In[12]:= Needs@"Geometry`Rotations`"D
In[13]:= RemoteNeeds@"Geometry`Rotations`"D;
Note that packages other than the standard packages available to the master kernel may not be available on
remote kernels.

Example: Eigenvalues of Matrices

Definitions

The  parameter  prec  gives  the  desired  precision  for  the  computation  of  the  eigenvalues  of  a  random nän
matrix.

In[1]:= prec = 18;

The function mat generates a random nän matrix with numeric entries.

In[2]:= mat@n_D := Table@Random@Real, 8−1, 1<, precD, 8n<, 8n<D
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The function tf measures the time it takes to find the eigenvalues.

In[3]:= tf@n_D := Timing@Eigenvalues@mat@nDDD@@1DD
Make all these definitions known to all slave processors with the following command.

In[4]:= ExportEnvironment@8prec, tf, mat<D;
Clear the local value of prec, since it is no longer needed. Then check that the definitions have been carried
over to the slave processors.

In[5]:= Clear@precD;
In[6]:= RemoteEvaluate@precD
Out[6]= 818, 18, 18<
A sample run

Here you measure the time it takes to find the eigenvalues of 5 ä5 to 25ä25 matrices. Because the computa-
tions happen on remote computers that differ in their processor speeds, the results do not necessarily form
an increasing sequence.

In[7]:= ParallelMap@tf, 85, 10, 15, 20, 25<D
Out[7]= 80.03 Second, 0.01 Second, 0.04 Second, 0.173974 Second, 0.288956 Second<
Alternatively,  you  can  perform  the  same  computation  on  each  slave  processor  to  measure  their  relative
speeds.  Here  you find  the  speed  of  calculating  the  eigenvalues  of  a  20  ä  20  matrix  on  each  of  three  slave
processors.

In[8]:= RemoteEvaluate@tf@20DD
Out[8]= 80.43 Second, 0.09 Second, 0.164975 Second<
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6 Virtual Shared Memory

Shared Memory versus Distributed Memory

Special-purpose  multiprocessing hardware  comes in two types,  shared  memory  and distributed  memory.  In  a
shared-memory machine,  all  processors have access  to a  common main memory.  In a  distributed-memory
machine,  each  processor  has  its  own main  memory,  and  the  processors  are  connected  through a  sophisti-
cated network. A collection of networked PCs is also a kind of distributed-memory parallel machine.

Communication between processors is an important prerequisite for all but the most trivial parallel process-
ing  tasks.  In  a  shared-memory  machine,  a  processor  can  simply  write  a  value  into  a  particular  memory
location, and all other processors can read this value. In a distributed-memory machine, exchanging values
of variables involves explicit communication over the network.

Virtual Shared Memory

Virtual shared memory  is a programming model that allows processors on a distributed-memory machine to
be programmed as if they had shared memory. A software layer takes care of the necessary communication
in a transparent way.

PCT uses independent Mathematica kernels as parallel processors. It is clear that these kernels do not share a
common memory, even if they happen to reside on the same machine. The package Parallel`Virtualg
Shared`, which is part of PCT, implements virtual shared memory for these remote kernels.

The  package  is  normally  set  up  to  be  autoloaded  the  first  time  you  declare  a  shared  variable.  To  load  it
explicitly, use

Needs@"Parallel`VirtualShared "̀D
The  result  is  a  simple  programming  model.  If  a  variable  a  is  shared,  any  kernel  that  reads  the  variable
(simply by evaluating it),  reads a  common value  that  is  maintained by the  master kernel.  Any kernel  that



changes  the  value  of  a,  for  example  by  assigning  it  with  a  =  val,  will  modify  the  one  global  copy  of  the
variable a, so that all other kernels that subsequently read the variable will see its new value.

The drawback of  a  shared variable  is  that  every access  for read or  write requires  communication over  the
network, so it is slower than access to a local unshared variable.

Declaring Shared Variables

SharedVariables@8s1, s2, …<D declares the symbols si as shared variables

SharedVariables@s1, s2, …D same as SharedVariables@8s1, s2, …<D
SharedDownValues@8f1, f2, …<D declares the symvols fi as shared functions or data types

SharedDownValues@f1, f2, …D same as  SharedDownValues@8f1, f2, …<D
Declaring shared variables and downvalues. 

The command SharedVariables  has the attribute HoldAll  to prevent evaluation of the given variables,
which usually have values.

The  effect  of  SharedVariables  or  SharedDownValues  is  that  all  currently  connected  and  newly
launched remote kernels will perform all accesses to the shared variables through the master kernel.

$SharedVariables the list of currently shared variables (wrapped in Hold[])

$SharedDownValues the list of currently shared downvalues (wrapped in 
Hold[])

ClearShared@s1, s2, …D unshares the given variables or downvalues

ClearShared[] unshares all variables and downvalues

Manipulating the set of shared variables and downvalues. 

Clearing kernels with ClearSlaves[] will also clear any shared variables and downvalues.
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SharedVariables

A  variable  s  that  has  been  declared  shared  with  SharedVariables@sD  exists  only  in  the  master  (local)
kernel. The following operations on a remote kernel are redefined so that they have the described effect.

s evaluation of the variable will consult the master kernel for
the variable’s current value

s = e, s := e assigning a value to s will perform the assignment in the
master kernel

s++, s--, ++s, --s the increment/decrement operation is performed in the 
master kernel (this operation is atomic and can be used for
synchronization)

TestAndSet[s,e] if s has no value or its value is Null, set the value to e; 
otherwise, do nothing and return the current value of s (this
operation is atomic and can be used for synchronization)

Part[Unevaluated[s],i] extracts a part of s; the operation will transmit only the 
requested part over the MathLink connection, not the whole
value of s

s[[i]]= e replaces the specified part of the variable with a new value;
the old value of s must have the necessary structure to 
permit the part assignment

Operations on shared variables. 

For technical reasons, every shared variable must have a value. If the variable in the master kernel does not
have a value, it is set to Null.

Note  that  other  forms  of  assignments,  such  as  conditional  assignments  involving  side  conditions,  are  not
supported.

The customary form of part extraction, s[[i]],  will transmit the whole value of s  to the slave kernels. Use
Part[Unevaluated[s],i] to transmit only the ith component.

If a variable is Protected at the time you declare it as shared, remote kernels can only access the variable,
but not change its value.
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SharedDownValues

A  symbol  f  that  has  been  declared  shared  with  SharedDownValues@fD  exists  only  in  the  master  (local)
kernel. The following operations on a remote kernel are redefined so that they have the described effect.

f[i], f[i, j], … evaluation of the function or array element f[i], etc., will
consult the master kernel for the symbol’s current 
downvalue

f[i] = e, f[i, j] = e, f[i] := e, … defining a value for f[i], etc., will perform the definition in
the master kernel

f[[i]]++, f[[i]]--, ++f[[i]], 
--f[[i]]

performs the increment/decrement operation in the master
kernel (this operation is atomic and can be used for 
synchronization)

TestAndSet[f[i], e] if f[i] has no value or its value is Null, sets the value to e;
otherwise, does nothing and returns the current value of 
f[i] (this operation is atomic and can be used for 
synchronization)

Operations on shared functions.

For  technical  reasons,  every expression of  the  form f@…D  must  have a  value.  If  the  expression f@…D  in  the
master kernel does not evaluate, the result is set to Null.

Note  that  other  forms  of  assignments,  such  as  conditional  assignments  involving  side  conditions,  are  not
supported.

You  can  define  shared  functions,  as  in  the  following.  Be  sure  that  the  symbol  x  does  not  have  a  value  in
either the remote kernels or in the master kernel. The symbol x should not be a shared variable.

f@x_D := x^2

If  you make a delayed assignment on a remote kernel,  the right side of the definition will be evaluated on
the  remote  kernel  when  you  use  the  function.  In  an  immediate  assignment,  it  is  evaluated  on  the  master
kernel.

f@x_D = x^2
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If you make a delayed assignment on the master kernel, the right side of the definition will be evaluated on
the master kernel when you use the function. To cause the right side to be evaluated on the remote kernel
nevertheless, use SendBack[].

f@x_D := SendBack@x^2D
You can implement indexed variables or arrays using shared downvalues of the form x@1D,  x@2D,  and so
forth.

If a function is Protected when you declare it as shared, remote kernels can only use it, but not change its
definition.

Basic Example

Load PCT, then start a few local or remote kernels.

In[1]:= Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Assign the initial value 17 to x and declare x as a shared variable.

In[2]:= x = 17;
SharedVariables@xD

At least two remote kernels should be running. Assign them to two variables for easier use.

In[4]:= r1 = $Slaves@@1DD; r2 = $Slaves@@2DD;
The kernel r1 now has access to the common value of x.

In[5]:= RemoteEvaluate@x, r1D
Out[5]= 17

Kernel r2 can change the value of x to 18.

In[6]:= RemoteEvaluate@x = 18, r2D
Out[6]= 18
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The local copy of x on the master kernel has been changed as well.

In[7]:= x

Out[7]= 18

Kernel r1 sees the new value, too.

In[8]:= RemoteEvaluate@x, r1D
Out[8]= 18

Synchronization

In a situation where several concurrently running remote kernels access the same shared variable for read-
ing and writing, there is no guarantee that the value of a variable is not changed by another process between
the time you read a  value  and write  a  new value.  Any other  new value  that another  process wrote  in the
meantime would get overwritten.

Example: Critical Sections

This  classic  example  of  uncontrolled  access  to  a  shared  variable  illustrates  the  problem.  To  try  out  this
example, you should have between two and 10 remote kernels running. 

The code inside the first argument of ParallelMap is the client code that is executed independently on the
available  remote  kernels.  The  code  reads  the  shared  variable  y,  stores  its  value  in  a  local  variable  a,  per-
forms  some  computations  (here  simulated  with  Pause),  and  then  wants  to  increment  the  value  of  y  by
setting it to a + 1. But by that time, the value of y is most likely no longer equal to a, because another pro-
cess will have changed it.
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In[9]:= SharedVariables@yD;
In[10]:= y = 0;

ParallelMap@H
Pause@0.4 Random@DD;H∗ begin critical section ∗L
a = y;
Pause@Random@DD;
y = a + 1H∗ end critical section ∗LL &,

Range@10DD
Out[11]= 81, 2, 3, 1, 2, 2, 1, 2, 1, 2<
If this code were run sequentially (by changing ParallelMap  into Map),  the final value of y  would be 10,
but with enough parallel processes, it will most likely be lower.

In[12]:= y

Out[12]= 3

The code between reading the variable y  and setting it to a new value is called a critical section.  During its
execution,  no  other  process  should  read  or  write  y.  To  reserve  a  critical  section,  a  process  can  acquire  an
exclusive lock before entering the critical section and release the lock after leaving the critical section.

PCT  provides  the  operation  TestAndSet[lck,e]  to  acquire  a  lock.  The  argument  lck  must  be  a  shared
variable; once a process has set lck to a unique value, no other process should set lck. To release the lock, the
process that acquired it simply sets lck to Null. 

Here is the previous example with the additional code to implement locking. The processes use the unique
integer  function  parameter  #  as  the  value  of  the  lock.  This  value  is  guaranteed  to  be  different  for  each
process. To acquire the lock, a process performs TestAndSet@lck, #D and then checks whether the result is
equal to #.  If  it  is,  the locking was successful.  If  it  is  not,  some other process currently  holds the lock.  The
returned value will even tell you which process holds the lock.

If  locking  fails,  you  have  no  choice  but  to  try  again  until  you  eventually  succeed.  Note  that  between
attempts  to  acquire  the lock (inside While)  the  process  waits  for  a  while.  Otherwise,  processes waiting to
acquire a lock that is reserved for another process will put a heavy load on the master kernel.

Chapter 6: Virtual Shared Memory 73



In[13]:= SharedVariables@8y, lck<D;
In[14]:= y = 0;

ParallelMap@H
Pause@0.4 Random@DD;
While@TestAndSet@lck, #D =!= #, Pause@0.2DD; H∗ acquire lock ∗L
a = y;
Pause@Random@DD;
y = a + 1;
lck = Null; H∗ release lock ∗L
a + 1L &,

Range@10DD
Out[15]= 81, 5, 6, 2, 8, 9, 7, 10, 3, 4<
In[16]:= y

Out[16]= 10

Locking  slows  down  a  computation  because  remote  processes  may  have  to  wait  for  one  another.  In  this
example, the result is essentially a sequential execution. You should keep critical sections as short as possi-
ble. If a process sets a lock but never releases it, a deadlock may occur in which any other process waiting to
acquire the lock will wait forever.

You can also use other atomic operations such as lck++ for locking purposes.

Tracing the Computation of This Example

For debugging shared variable operations, you can enable tracing provided you loaded the debug package
before PCT.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D
In[3]:= SharedVariables@8y, lck<D;
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Now you can enable SharedMemory tracing.

In[4]:= SetOptions@$DebugObject, Trace → 8SharedMemory<D
Out[4]= 8Trace → 8SharedMemory<<
In[5]:= y = 0;

ParallelMap@H
Pause@0.4 Random@DD;
While@TestAndSet@lck, #D =!= #, Pause@0.2DD;
a = y;
Pause@Random@DD;
y = a + 1;
lck = Null;
a + 1L &,

Range@4DD
SharedMemory: slave6@n2D: TestAndSet@lck, 2D | 2

SharedMemory: slave6@n2D: y | 0

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 2

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 2

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 2

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 2

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 2

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 2

SharedMemory: slave6@n2D: y = 1 | 1

SharedMemory: slave6@n2D: lck = Null | Null

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 4

SharedMemory: slave8@n4D: y | 1

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4
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SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

SharedMemory: slave8@n4D: y = 2 | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave8@n4D: lck = Null | Null

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 3

SharedMemory: slave7@n3D: y | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave7@n3D: y = 3 | 3

SharedMemory: slave7@n3D: lck = Null | Null

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 1

SharedMemory: slave5@n1D: y | 3

SharedMemory: slave5@n1D: y = 4 | 4

SharedMemory: slave5@n1D: lck = Null | Null

Out[6]= 84, 1, 3, 2<
In[7]:= SetOptions@$DebugObject, Trace → 8<D;
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7 Failure Recovery, Tracing, and 
Debugging

Failure of Remote Kernels

A remote kernel in use may fail at any time, due to hardware, network, or software problems. A failure of a
remote  kernel  will  be  noticed  the  next  time  PCT  tries  to  send  a  command to  the  kernel  or  tries  to  read  a
result from it. The error message Parallel::rdead is used to notify you of a failed remote kernel.

If  the failed kernel had any processes assigned to it,  these processes will be lost.  If  you are using Wait for
one of these processes, your program will never terminate because the process will never return.

Because PCT keeps track of the commands submitted to remote kernels, it can reassign these commands to
another available remote kernel if  a remote kernel fails.  Alternatively, it may simply terminate the waiting
processes with the result $Failed, which indicates failure. The chosen behavior is determined by the value
of the variable $RecoveryMode.

$RecoveryMode gives the current setting of the failure recovery mode

$RecoveryMode = None does not perform any failure recovery

$RecoveryMode = Abandon lets processes assigned to a failed kernel return with the 
result $Failed (default)

$RecoveryMode = ReQueue reassigns processes on the failed kernel to another kernel

Possible failure recovery modes.

The  ReQueue  recovery  mode  lets  you  finish  a  computation  as  long  as  at  least  one  kernel  remains  usable.
However,  it  may give  wrong results  if  the remote  computations produce side  effects or  your  computation
depends on a certain number of available remote kernels. Side effects are usually present if you use virtual



shared memory. There is also the possibility of a deadlock if a process on a failed kernel acquired, but never
released, a shared resource.

You can use the Abandon recovery mode to implement your own failure recovery method.

Failure  recovery  affects  only  processes  started  with  Queue[]  and  collected  with  Wait[].  Other  parallel
commands,  such  as  ParallelEvaluate[],  cannot  handle  a  failed  remote  kernel  and  always  return
$Failed in such cases.

Tracing and Debugging

Debugging  concurrent  programs  can  be  tricky.  PCT  offers  a  tracing  facility  that  lets  you  monitor  the
progress of your computation. To use these features, you have to load the debugging package before load-
ing PCT.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D
SetOptions[$DebugObject, 
opts…]

sets debug options of PCT

Options@$DebugObjectD gives the current debug option settings

Trace→{tracers…} sets trace events

TraceHandler→handler specifies how trace events should be handled; possible 
values include Print and Save

TraceList[] gives the current list of trace events

newTraceList[] initializes the trace list

Debugging functions.
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OptionValues[Trace] gives the list of possible tracers

MathLink traces MathLink events

SendReceive traces Send/Receive operations

Queueing traces process scheduling (Queue/Wait)

SharedMemory traces shared variable access (available only if the Virtual
Shared package has been loaded)

Tracers.

Tracing Events

To  see  certain  events,  specify  the  desired  class  of  events  in  SetOptions[$DebugObject,Trace
->{tracers…}]. From then on everytime one of the selected events occurs, a message is printed.

In[3]:= SetOptions@$DebugObject, Trace → 8SendReceive<D
Out[3]= 8Trace → 8SendReceive<<

ParallelEvalute  uses  Send  and  Receive  internally,  so  you  can  see  how  the  computation  is  divided
into parts that are sent to remote kernels.

In[4]:= ParallelEvaluate@81, 2, 3, 4, 5<, PrimeD
SendReceive: Sending to slave9@localhostD: Prime@81, 2, 3<D Hq=1L
SendReceive: Sending to slave10@localhostD: Prime@84, 5<D Hq=1L
SendReceive: Receiving from slave9@localhostD: 82, 3, 5< Hq=0L
SendReceive: Receiving from slave10@localhostD: 87, 11< Hq=0L

Out[4]= 82, 3, 5, 7, 11<

To turn off tracing, specify the empty list as tracers.

In[5]:= SetOptions@$DebugObject, Trace → 8<D
Out[5]= 8Trace → 8<<
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Saving Trace Events

Instead  of  printing  trace  events,  PCT can  save  them in a  list  for  later  analysis.  First,  configure  the  tracing
system to save the events and initialize the trace list.

In[6]:= SetOptions@$DebugObject, TraceHandler → SaveD
Out[6]= 8TraceHandler → Save<

In[7]:= newTraceList@D
Now specify which events to trace as before.

In[8]:= SetOptions@$DebugObject, Trace → 8SendReceive<D
Out[8]= 8Trace → 8SendReceive<<

Run your computation.

In[9]:= ParallelEvaluate@81, 2, 3, 4, 5<, PrimeD
Out[9]= 82, 3, 5, 7, 11<

The list of events is now available in TraceList[], which is best viewed in TableForm.

In[10]:= TableForm@TraceList@D, TableDepth → 2,
TableHeadings → 8Automatic, 8"Trigger", "Event"<<D

Out[10]//TableForm=
Trigger Event

1 SendReceive Sending to slave9@localhostD: Prime@81, 2, 3<D Hq=1L
2 SendReceive Sending to slave10@localhostD: Prime@84, 5<D Hq=1L
3 SendReceive Receiving from slave9@localhostD: 82, 3, 5< Hq=0L
4 SendReceive Receiving from slave10@localhostD: 87, 11< Hq=0L

To reset the list, use newTraceList[] and to end tracing, turn it off as before.

In[11]:= SetOptions@$DebugObject, Trace → 8<D
Out[11]= 8Trace → 8<<
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To switch back to printing trace events, use the following.

In[12]:= SetOptions@$DebugObject, TraceHandler → PrintD
Out[12]= 8TraceHandler → Print<

The Format of Trace Events

MathLink

MathLink trace messages are described in the chapter Starting Remote Kernels.

SendReceive

A SendReceive trace message has the format

Sending to slave : expr Hq = nL

or

Receiving from slave : expr Hq = nL

where slave  is  the  kernel  involved,  expr  is  the  expression sent  or  received,  and n  is  the  size  of  the  kernel’s
queue.

Queueing

A Queueing trace message has one of these formats (pid is a process ID, slave a remote kernel).

• A process is queued (with Queue[]). n is the length of the queue.

pid queued HnL

• A process is sent to a remote kernel.

pid on slave

• A process has finished and has been received from a remote kernel.

pid done

• A process has been returned to the application (inside Wait[] or WaitOne[]).

pid dequeued
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SharedMemory

A SharedMemory trace message has the format

slave : access

where  slave  is  the  kernel  that  accessed  the  shared  variable,  and  access  describes  how  the  variable  was
accessed.

• The value of the variable var was requested and val was returned.

var Ø val

•  The remote kernel asked to change the variable var to val. The new value val was returned.

Hvar = valL Ø val

• The value of a part of the variable var was requested and val was returned.

varPspecT Ø val

• The remote kernel asked to change a part of the variable var to val.

HvarPspecT = valL Ø val

• The remote kernel asked for exclusive access to the variable var, setting it to val. The request was 
granted because var was currently unused.

TestAndSet@var, valD → val

• The remote kernel asked for exclusive access to the variable var, setting it to val. The request was 
denied because var already had the different value old set by another process.

TestAndSet@var, valD → old

• The remote kernel released exclusive access to the variable var.

Hvar = NullL → Null

For  shared  downvalues,  the  expression  var  in  the  preceding  examples  will  be  a  normal  expression  whose
head is the shared downvalue, such as f@…D.
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Aborting Parallel Programs

You  can  interrupt  and  abort  the  local  (master)  kernel  during  a  concurrent  computation.  Any  evaluations
already  on  remote  kernels  will  continue  to  run.  After  an  abort,  wait  for  any  processes  still  in  the  queues
using Wait, abandon them with ResetQueues, or abort the remote kernels with ResetSlaves[].

If you abort any other operation such as ParallelEvaluate[], you should follow it by ResetSlaves[].

ResetQueues[] waits for any running processes to finish and clears all 
queues

ResetSlaves[] aborts all remote kernels and makes them available again

CloseSlaves[] closes the MathLink connections to all remote kernels

Recovering from interrupts and resetting remote kernels.

There is not always a reliable way to interrupt a remote kernel. A reliable way to interrupt a remote kernel is
not always available.  ResetQueues[]  waits for any running computations to finish normally to avoid an
interrupt. If this takes too long, try to abort the master kernel again and then use ResetSlaves[].

ResetSlaves[]  tries  to  abort  any  remote  kernels  that  are  not  responding.  Kernels  that  fail  to  react  are
closed.

If you quit the local kernel while a remote one is still doing a computation, the remote kernel may continue
running and should be aborted or eventually killed using the appropriate operating system command.
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8 Sample Parallel Mathematica 
Commands

PCT provides parallel implementations of several Mathematica commands. These are part of the Parallel`
Commands` package. Load this package with  Needs["Parallel`Commands`"], after loading PCT.

Most parallel versions use ParallelMap or ParallelTable  to distribute part of the computational work
to all available remote kernels. Others use Queue and Wait to create their own concurrent processes.

The  basic  parallel  commands  ParallelMap  and  ParallelTable  are  described  in  the  chapter  Parallel
Evaluation.

The implementations in this chapter are of a general nature and do not try to optimize the computation for a
particular  number  of  kernels.  Depending on the  relation between the amount  of  parallel  computation and
the size of the expressions that needs to be sent back and forth to the remote kernels, you may or may not
observe a speed increase over the standard sequential Mathematica commands.

The Parallel`Commands`  package is distributed in source form. You are welcome to look at it and gain
insight  for  possible  parallelization  of  your  own  algorithms.  This  package  is  covered  under  the  PCT
copyright.

The new ParallelEvaluate[]  in  Version 2  of  PCT made many of  the  implementations in this  package
either trivial or obsolete. The package is provided mainly for backward compatibility.



Parallel Animation and Plotting

ParallelAnimate[command, iterator, options]

parallel version of Graphics`Animation`
Animate[command, iterator, options]

Ö

ParallelPlot3D[expr, {x, xmin, xmax}, {y, min, ymax}, options]
parallel version of Plot3D[expr, {x, xmin, xmax}, {y, min, 

ymax}, options]

ParallelDensityPlot[expr, {x, xmin, xmax}, {y, min, ymax}, options]
parallel version of DensityPlot[expr, {x, xmin, xmax}, 

{y, min, ymax}, options]

ParallelContourPlot[expr, {x, xmin, xmax}, {y, min, ymax}, options]
parallel version of ContourPlot[expr, {x, xmin, xmax}, 
{y, min, ymax}, options]

ParallelParametricPlot3D[{x, y, z}, {u, u0, u1, (du)}, {v, v0,  v1, (dv)}, options…]

parallel version of ParametricPlot3D[{x, y, z}, {u, u0, 

u1, (du)}, {v, v0, v1, (dv)}, options]

Parallel animation and plotting.

Note that even though a graphic is computed in parallel, it is still rendered sequentially in the master kernel
and front end.
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Parallel Inner Products

ParallelInner[f, list1, list2, g]

parallel version of Inner[f, list1, list2, g]

ParallelDot[m1, m2] parallel version of Dot[m1, m2] or m1, m2; equivalent to 
ParallelInner[Times, m1, m2, Plus]

Parallel inner products.

Parallelization happens along  all  dimensions of  the  first  matrix  or tensor.  All  computations involving g  or
Plus with all elements of the second matrix or tensor are performed on the same remote processor.

Parallel computations cannot be nested.

Examples

Load PCT and the Parallel`Commands` packages and start a few remote kernels.

In[1]:= Needs@"Parallel`"D
Needs@"Parallel`Commands`"D

Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

An Animation

Load the Graphics`Animation` package.

In[3]:= Needs@"Graphics`Animation`"D
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Try out the animation sequentially with a small number of frames.

In[4]:= Animate@Plot3D@Sin@x + tD Sin@y + t ê 2D, 8x, −2 π, 2 π<, 8y, −2 π, 2 π<,
PlotPoints −> 50, PlotRange −> 8−1, 1<D, 8t, 0, 4 π<, Frames −> 4, Closed −> TrueD;
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Now compute it in parallel with a larger number of frames.

In[5]:= ParallelAnimate@Plot3D@Sin@x + tD Sin@y + t ê 2D, 8x, −2 π, 2 π<, 8y, −2 π, 2 π<,
PlotPoints −> 50, PlotRange −> 8−1, 1<D, 8t, 0, 4 π<, Frames −> 24, Closed −> TrueD;
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Note  that  the  rendering  of  the  frames  has  to  happen sequentially  on the  master  kernel  and  the  front  end;
only their computation can be parallelized.
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QueueRun, 44
 
Receive, 35
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ResetSlaves, 33, 83
rsh, 13
 
Send, 35
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ssh, 12
Synchronization, 72

TCPIP, 15
TestAndSet, 69
Tracing, 77

Unix, 13

Variables
remote, 36
shared, 68

VirtualShared, 67
 

Wait, 44
WaitOne, 44
Windows, 15
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$AvailableMachines, 25
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$mathkernel, 23
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$RemoteCommand, 22
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90 Parallel Computing Toolkit


